A process model for the heat-affected zone microstructure evolution in duplex stainless steel weldments: Part II. Application to electron beam welding

Abstract

In the present investigation, a process model for electron beam (EB) welding of different grades of duplex stainless steels (i.e. SAF 2205 and 2507) has been developed. A number of attractive features are built into the original finite element code, including (1) a separate module for prediction of the penetration depth and distribution of the heat source into the plate, (2) adaptive refinement of the three-dimensional (3-D) element mesh for quick and reliable solution of the differential heat flow equation, and (3) special subroutines for calculation of the heat-affected zone (HAZ) microstructure evolution. The process model has been validated by comparison with experimental data obtained from in situ thermocouple measurements and optical microscope examinations. Subsequently, its aptness to alloy design and optimization of welding conditions for duplex stainless steels is illustrated in different numerical examples and case studies pertaining to EB welding of tubular joints.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S.K. Ahn, D.Y. Choi, S.C. Lee, and Y.D. Lee: Duplex Stainless Steels 97, 5th World Conf., Maastricht, The Netherlands, 1997, Stainless Steel World, KCI Publishing, The Netherlands, 1997, pp. 357–67.

    Google Scholar 

  2. 2.

    S. Hertzman, P. Ferreira, and B. Brolund: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 277–85.

    Article  CAS  Google Scholar 

  3. 3.

    B.E.S. Lindblom, B. Lundqvist, and N.E. Hannerz: Scand. J. Metall., 1991, vol. 20, pp. 305–15.

    CAS  Google Scholar 

  4. 4.

    S. Atamert and J.E. King: Acta Metall. Mater., 1991, vol. 39, pp. 273–85.

    Article  CAS  Google Scholar 

  5. 5.

    S. Atamert and J.E. King: Mater. Sci. Technol., 1992, vol. 8, pp. 896–911.

    CAS  Google Scholar 

  6. 6.

    H. Hoffmeister and R. Mundt: Arch. Eisenhüttenwes., 1981, vol. 52, pp. 159–64.

    CAS  Google Scholar 

  7. 7.

    H. Hoffmeister and R. Mundt: Arch. Eisenhüttenwes., 1983, vol. 54, pp. 291–94.

    Google Scholar 

  8. 8.

    P.J. Ferreira and S. Hertzman: Duplex Stainless Steels 91, 3rd Int. Conf., Beaune, France, 1991, Les Editions de Physique, Les Ulis France, 1991, pp. 959–66.

    Google Scholar 

  9. 9.

    J.C. Lippold, W. Lin, S. Brandi, I. Varol, and W.A. Baeslack III: Duplex Stainless Steels 94, 4th Int. Conf., Glasgow, Scotland, 1994, TWI, Abington Publishing, Abington, Cambridge, England, paper no. 116.

  10. 10.

    S. Hertzman, W. Roberts, and M. Lindenmo: Duplex Stainless Steels 86, The Hague, The Netherlands, 1986, Nederlands Instituut voor Lasttechniek, The Netherlands, 1986, pp. 257–67.

    Google Scholar 

  11. 11.

    B. Bonnefois: Duplex Stainless Steels 97, 5th World Conf., Maastricht, The Netherlands, 1997, Stainless Steel World, KCI Publishing, The Netherlands, 1997, pp 491–98.

    Google Scholar 

  12. 12.

    B. Bonnefois, J. Charles, F. Dupoiron, and P. Soulignac: Duplex Stainless Steels 91, 3rd Int. Cofn., Beaune, France, 1991, Les Editions de Physique, Les Ulis France, 1991, pp. 347–61.

    Google Scholar 

  13. 13.

    B.E.S. Lindblom and N.E. Hannerz: Duplex Stainless Steels 91, 3rd Int. Conf., Beaune, France, 1991, Les Editions, de Physique, Les Ulis France, 1991, pp. 951–58.

    Google Scholar 

  14. 14.

    K. Yasuda, R. N. Gunn, and T.G. Gooch: Duplex Stainless Steels 94, 4th Int. Conf., Glasgow, Scotland 1994, TWI, Abington Publishing, Abington, Cambridge, England, paper no. 26.

  15. 15.

    D.J. Kotecki and J.L.P. Hilkes: Duplex Stainless Steels 94, 4th Int. Conf., Glasgow, Scotland, 1994, TWI, Abington Publishing, Abington, Cambridge, England, Keynote paper no. VI.

  16. 16.

    T.G. Gooch and B.J. Ginn: Duplex Stainless Steels 94, 5th World Conf., Maastricht, The Netherlands, 1997, Stainless Steel World, KCI Publishing, The Netherlands, 1997, pp. 311–20.

    Google Scholar 

  17. 17.

    Ø. Grong: Metallurgical Modelling of Welding, 2nd ed., The Institute of Materials, London, 1997.

    Google Scholar 

  18. 18.

    O.R. Myhr, Ø. Grong, S. Klokkehaug, H.G. Fjær, and A.O. Kluken: Sci. Technol. Welding Joining, 1997, vol. 2, pp. 245–53.

    CAS  Google Scholar 

  19. 19.

    H. Hemmer and Ø. Grong: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2915–29.

    Article  CAS  Google Scholar 

  20. 20.

    H. Hemmer and Ø. Grong: Sci. Technol. Welding Joining, 1999, vol. 4, pp. 219–25.

    Article  CAS  Google Scholar 

  21. 21.

    D. Rosenthal: Weld. J., 1941, vol. 20, pp. 220–34.

    Google Scholar 

  22. 22.

    H. Carslaw and J.C. Jaeger: Conduction of Heat in Solids, Oxford University Press, Oxford, United Kingdom, 1959.

    Google Scholar 

  23. 23.

    T. Miyazaki and W.H. Giedt: Int. J. Heat Mass Transfer, 1982, vol. 25, pp. 807–14.

    Article  CAS  Google Scholar 

  24. 24.

    E.J. Holm and S. Klokkehaug: Proc. 4th World Congr. of Computational Mechanics, Buenos Aires, Argentina, 1998.

  25. 25.

    E.J. Holm and H.P. Langtangen: Int. J. Numerical Methods in Fluids, 1998, vol. 28, pp. 679–702.

    Article  Google Scholar 

  26. 26.

    E. Scheil: Arch. Eisenhuttenwes., 1934–35, vol. 8, pp. 565–71.

    Google Scholar 

  27. 27.

    J.W. Christian: The Theory of Phase Transformations in Metals and Alloys—Part I, Pergamon Press, Oxford, United Kingdom, 1975.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hemmer, H., Grong, Ø. & Klokkehaug, S. A process model for the heat-affected zone microstructure evolution in duplex stainless steel weldments: Part II. Application to electron beam welding. Metall Mater Trans A 31, 1035–1048 (2000). https://doi.org/10.1007/s11661-000-1021-2

Download citation

Keywords

  • Welding
  • Ferrite
  • Austenite
  • Material Transaction
  • Welding Speed