Skip to main content
Log in

Mathematical modeling of the hot strip rolling of microalloyed Nb, multiply-alloyed Cr-Mo, and plain C-Mn steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Industrial mill logs from seven different hot strip mills (HSMs) were analyzed in order to calculate the mean flow stresses (MFSs) developed in each stand. The schedules were typical of the processing of microalloyed Nb, multiply-alloyed Cr-Mo, and plain C-Mn steels. The calculations, based on the Sims analysis, take into account work roll flattening, redundant strain, and the forward slip ratio. The measured stresses are then compared to the predictions of a model based on an improved Misaka MFS equation, in which solute effects, strain accumulation, and the kinetics of static recrystallization (SRX) and metadynamic recrystallization (MDRX) are fully accounted for. Good agreement between the measured and predicted MFSs is obtained over the whole range of rolling temperatures. The evolution of grain size and the fractional softening are also predicted by the model during all stages of strip rolling. Special attention was paid to the Nb steels, in which the occurrence of Nb(C, N) precipitation strongly influences the rolling behavior, preventing softening between passes. The present study leads to the conclusion that Mn addition retards the strain-induced precipitation of Nb; by contrast, Si addition has an accelerating effect. The critical strain for the onset of dynamic recrystallization (DRX) in Nb steels is derived, and it is shown that the critical strain/peak strain ratio decreases with increasing Nb content; furthermore, Mn and Si have marginal but opposite effects. It is demonstrated that DRX followed by MDRX occurs under most conditions of hot strip rolling; during the initial passes, it is due to high strains, low strain rates, and high temperatures, and, in the final passes, it is a consequence of strain accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ε :

true strain

ε :

true strain rate (1/s)

ε a :

accumulated true strain

ε c :

critical strain for the initiation of dynamic recrystallization

ε f :

retained strain present in the material after leaving the finishing train

Z:

Zener-Hollomon parameter = ε · exp(Q def / RT)(1/s)

ε p :

peak strain

T :

absolute temperature (K)

Q def :

activation energy for deformation (J/mol)

X :

fractional softening

t 0.5 :

time for 50 pct softening (s)

R:

gas constant = 8.31 (J/mol·K)

d 0 :

initial grain size (µm)

T nr :

interpass recrystallization stop temperature (K)

t ps :

precipitation start time

T RH :

absolute reheat temperature (K)

T pass :

absolute pass temperature (K)

T :

cooling rate (°C/s)

H :

strip thickness before passes

h :

strip thickness after all passes

σ M :

mean flow stress

X dyn :

fractional softening attributable to dynamic recrystallization

σ ss :

steady-state stress

K :

parameter that converts flow stress to mean flow stress

K s :

supersaturation ratio

t ip :

interpass time

Nbeff :

effective Nb concentration

d :

grain size

d° α :

ferrite grain size when the austenite is unstrained

d γ :

austenite grain size

d α :

ferrite grain size after transformation of deformed austenite

References

  1. F. Boratto, R. Barbosa, S. Yue, and J.J. Jonas: in Thermec 88, I Tamura, ed., ISIJ, Tokyo, 1988, pp. 383–89.

    Google Scholar 

  2. D.Q. Bai, S. Yue, and J.J. Jonas: Proc. Int. Conf. on Modeling of Metal Rolling Processes, The Institute of Materials, London, 1993, pp. 180–92.

    Google Scholar 

  3. D.Q. Bai, S. Yue, W.P. Sun, and J.J. Jonas: Metall. Trans. A, 1993, vol. 24A, pp. 2151–59.

    CAS  Google Scholar 

  4. T.M. Maccagno, J.J. Jonas, S. Yue, B.J. McCrady, R. Slobodian, and D. Deeks: Iron Steel Inst. Jpn. Int., 1994, vol. 34, pp. 917–22.

    CAS  Google Scholar 

  5. Microalloying ’75, Int. Symp. on HSLA Steels, Union Carbide Corp., New York, NY, USA, 1977.

  6. M. Cohen and W. Owen: Microalloying ’75, Int. Symp. on HSLA Steels, Union Carbide Corp., New York, NY, USA, 1977, pp. 2–8.

    Google Scholar 

  7. F.B. Pickering: Microalloying ’75, Int. Symp. on HSLA Steels, Union Carbide Corp., New York, NY, USA, 1977, pp. 9–31.

    Google Scholar 

  8. T. Gladman, D. Dulieu, and I.D. McIvor: Microalloying ’75, Int. Symp. on HSLA Steels, Union Carbide Corp., New York, NY, USA, 1977, pp. 32–58.

    Google Scholar 

  9. R.D. Stout: Microalloying ’75, Int. Symp. on HSLA Steels, Union Carbridge Corp., New York, NY, USA, 1977, pp. 488–97.

    Google Scholar 

  10. P.H.M. Hart, R.E. Dolby, N. Bailey, and D.J. Widgery: Microalloying ’75, Int. Symp. on HSLA Steels, Union Carbide Corp., New York, NY, USA, 1977, pp. 540–51.

    Google Scholar 

  11. T.M. Maccagno, J.J. Jonas, and P.D. Hodgson: Iron Steel Inst. Jpn. Int., 1996, vol. 36, pp. 720–28.

    CAS  Google Scholar 

  12. I.P. Kemp, P.D. Hodgson, and R.E. Gloss: Proc. Int. Conf. on Modeling of Metal Rolling Processes, The Institute of Materials, London, 1993, pp. 149–56.

    Google Scholar 

  13. T.M. Maccagno and J.J. Jonas: Iron Steel Inst. Jpn. Int., 1994, vol. 34, pp. 607–14.

    CAS  Google Scholar 

  14. P.D. Hodgson: in Thermec ’97, T. Chandra and T. Sakai, eds., TMS, Warrendale, PA, 1997, pp. 121–31.

    Google Scholar 

  15. P.D. Hodgson: Ph.D. Thesis, University of Queensland, Queensland, Australia, 1993, p. 3.

    Google Scholar 

  16. L.N. Pussegoda, P.D. Hodgson, and J.J. Jonas: Mater. Sci. Technol., 1992, vol. 8, pp. 63–71.

    CAS  Google Scholar 

  17. L.N. Pussegoda, S. Yue, and J.J. Jonas: Metall. Trans. A, 1990, vol. 21A, pp. 153–64.

    CAS  Google Scholar 

  18. F.H. Samuel, S. Yue, J.J. Jonas, and B.A. Zbinden: Iron Steel Inst. Jpn. Int., 1989, vol. 29, pp. 878–86.

    CAS  Google Scholar 

  19. E.C. Sarmento and J.F. Evans: Proc. Int. Conf. on Processing, Microstructure and Properties of Microalloyed and Other High Strength Low Alloy Steels, A.J. DeArdo, ed., ISS-AIME, Warrendale, PA, 1992, pp. 105–12.

    Google Scholar 

  20. J.J. Jonas: in Recrystallization ’90, T. Chandra, ed., TMS-AIME, Warrendale, PA, 1990, pp. 27–36.

    Google Scholar 

  21. A. Schmitz, J. Neutjens, J.C. Herman, and V. Leroy: 40th MWSP Conf., ISS, Warrendale, PA, 1998, pp. 295–309.

    Google Scholar 

  22. J. Neutjens, P. Harlet, T. Bakolas, and P. Cantinieaux: 40th MWSP Conf., ISS, Warrendale, PA, 1998, pp. 311–21.

    Google Scholar 

  23. R.B. Sims: Proc. Inst. Mech. Eng., 1954, vol. 168, pp. 191–200.

    Google Scholar 

  24. J.H. Hitchcock: Roll Neck Bearings, ASME, New York, NY, 1935, Appendix I, p. 33.

    Google Scholar 

  25. F. Siciliano, Jr., K. Minami, T.M. Maccagno, and J.J. Jonas: Iron Steel Inst. Jpn. Int., 1996, vol. 36, pp. 1500–06.

    CAS  Google Scholar 

  26. Y. Misaka and T. Yoshimoto: J. Jpn. Soc. Technol. Plast., 1967–68, vol. 8, pp. 414–22.

    Google Scholar 

  27. F. Siciliano, Jr.: Ph.D. Thesis, McGill University, Montreal, 1999, pp. 53–68.

    Google Scholar 

  28. K. Minami, F. Siciliano, Jr., T.M. Maccagno, and J.J. Jonas: Iron Steel Inst. Jpn. Int., 1996, vol. 36, pp. 1507–15.

    CAS  Google Scholar 

  29. T. Senuma and H. Yada: 7th Risø Int. Symp., N. Hansen, D.J. Jensen, T. Leffers and B. Halph, Risø, Roskilde, Denmark, 1986, pp. 547–52.

  30. H. Yada: Proc. Int. Symp. on Accelerated Cooling of Rolled Steel, G.E. Ruddle and A.F. Crawley, eds., Pergamon Press, Elmsford, NY, 1988, pp. 105–18.

    Google Scholar 

  31. T. Senuma, H. Yada, Y. Matsumura, and T. Futamura: Tetsu-to-Hagane, 1984, vol. 70, pp. 322–29 (in Japanese).

    Google Scholar 

  32. A. Kirihata, F. Siciliano, Jr., T.M. Maccagno, and J.J. Jonas: Iron Steel Inst. Jpn. Int., 1998, vol. 38, pp. 187–95.

    CAS  Google Scholar 

  33. P.D. Hodgson and R.K. Gibbs: Iron Steel Inst. Jpn. Int., 1992, vol. 32, pp. 1329–38.

    CAS  Google Scholar 

  34. C. Roucoules, S. Yue, and J.J. Jonas: Proc. Int. Conf. on Modeling of Metal Rolling Processes, The Institute of Materials, London, 1993, pp. 165–79.

    Google Scholar 

  35. C. Roucoules: Ph.D. Thesis, McGill University, Montreal, 1992.

    Google Scholar 

  36. P.D. Hodgson, L.O. Hazeldon, D.L. Matthews, and R.E. Gloss: in Microalloying ’95, M. Korchynsky, A.J. DeArdo, P. Repas and G. Tither, ISS-AIME, Warrendale, PA, 1995, pp. 341–53.

    Google Scholar 

  37. R.K. Gibbs, P.D. Hodgson, and B.A. Parker: in Recrystallization ’90, T. Chandra, ed., TMS-AIME, Warrendale, PA, 1996, pp. 585–90.

    Google Scholar 

  38. J.J. Jonas and C.M. Sellars: in Future Developments of Metals and Ceramics, J.A. Charles, G.W. Greenwood and G.C. Smith, Institute of Materials, London, 1992, pp. 148–77.

    Google Scholar 

  39. D.C. Collinson, P.D. Hodgson, and C.H.J. Davies: Thermec ’97, T. Chandra and T. Sakai, eds., TMS, Warrendale, PA, 1997, pp. 483–89.

    Google Scholar 

  40. C. Roucoules, S. Yue, and J.J. Jonas: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 181–90.

    CAS  Google Scholar 

  41. P.D. Hodgson: Mater. Sci. Technol., 1996, vol. 12, p. 788.

    CAS  Google Scholar 

  42. C.M. Sellars: Mater. Sci. Technol., 1990, vol. 6, pp. 1072–81.

    CAS  Google Scholar 

  43. J.H. Beynon and C.M. Sellars: Iron Steel Inst. Jpn. Int., 1992, vol. 32, pp. 359–67.

    CAS  Google Scholar 

  44. P.D. Hodgson, J.J. Jonas, and S. Yue: Mater. Sci. Forum, 1992, vols. 94–96, pp. 715–22.

    Article  Google Scholar 

  45. M. Militzer, W.P. Sun, and J.J. Jonas: Acta Metall. Mater., 1994, vol. 42, pp. 133–41.

    Article  CAS  Google Scholar 

  46. C.M. Sellars: in Hot Working and Forming Processes, C.M. Sellars and G. Davies, eds., TMS, London, 1980, pp. 3–15.

    Google Scholar 

  47. F. Siciliano, Jr. and J.J. Jonas: in Microalloying in Steels, Microalloying in Steels: New Trends, for the 21st Century, CEIT, San Sebastian, Spain, J.M. Rodriguez-Ibabe, I. Gutierrez and B. Lopez, Trans-Tech Publications, Aedermannsdorf, 1998, p. 377; Mater. Sci. Forum, 1998, vols. 284–286, pp. 377–84.

  48. S. Kurokawa, J.E. Ruzzante, A.M. Hey, and F. Dyment: Met. Sci., 1983, vol. 17, pp. 433–38.

    CAS  Google Scholar 

  49. B. Dutta and C.M. Sellars: Mater. Sci. Technol., 1987, vol. 3, pp. 197–206.

    CAS  Google Scholar 

  50. K.J. Irvine, F.B. Pickering, and T. Gladman: J. Iron Steel Inst., 1967, vol. 205, pp. 161–82.

    CAS  Google Scholar 

  51. M.G. Akben, I. Weiss, and J.J. Jonas: Acta Metall., 1981, vol. 29, pp. 111–21.

    Article  CAS  Google Scholar 

  52. F. Siciliano, Jr., T.M. Maccagno, B.D. Nelson, and J.J. Jonas: Thermec ’97, T. Chandra and T. Sakai, eds., TMS, Warrendale, PA, 1997, pp. 347–53.

    Google Scholar 

  53. L. Meyer: Z. Metallkd., 1966, vol. 58, p. 334.

    Google Scholar 

  54. T.H. Johansen, N. Christensen and B. Augland: Trans. AIME, 1967, vol. 239, pp. 1651–54.

    CAS  Google Scholar 

  55. F. de Kazinsky, A. Axnas and P. Pachleitner: Jernkont. Ann., 1963, vol. 147, p. 408.

    Google Scholar 

  56. D.Q. Bai: Ph.D. Thesis, McGill University, Montreal, 1995, pp. 28–32.

    Google Scholar 

  57. E. Valdez and C.M. Sellars: Mater. Sci. Technol., 1991, vol. 7, pp. 622–30.

    Google Scholar 

  58. E. Scheil: Arch. Eisenhuttenwes., 1935, vol. 12, p. 565 (cited in Ref. 56).

    Google Scholar 

  59. F. Siciliano, Jr. and J.J. Jonas: ABM (Associação Brasileira de Metalurgia e Materiais), 1997, vol. 53, pp. 95–97 (in Portuguese).

    Google Scholar 

  60. F. Siciliano, Jr. and J.J. Jonas: The 7th Int. Conf. on Steel Rolling, Tokyo, Nov. 1998, pp. 534–39.

  61. M.G. Akben and J.J. Jonas: Proc. Int. Conf. on Technology and Applications of HSLA Steels, ASM, Philadelphia, PA, 1983, pp. 149–61.

    Google Scholar 

  62. J.A. Biglou, B.D. Nelson, D.R. Hall, and J.G. Lenard: 37th MWSP Conf., ISS, Warrendale, PA, 1996, pp. 661–68.

    Google Scholar 

  63. C.M. Sellars and J.H. Beynon: Proc. Conf. on HSLA Steels, D.P. Dunne and T. Chandra, eds., South Coast Printers, Port Kembla, Australia, 1985, pp. 142–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siciliano, F., Jonas, J.J. Mathematical modeling of the hot strip rolling of microalloyed Nb, multiply-alloyed Cr-Mo, and plain C-Mn steels. Metall Mater Trans A 31, 511–530 (2000). https://doi.org/10.1007/s11661-000-0287-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0287-8

Keywords

Navigation