Skip to main content
Log in

Sintering behavior of nanocrystalline γ-Ni-Fe powders

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Solid state sintering behavior of nanocrystalline (35 nm) γ-Ni-Fe powders, which were sintered under hydrogen atmospheres at temperatures up to 1300 K, was investigated by laser-photo-dilatometry. The sinterability of the γ-Ni-Fe powders was found to depend crucially on the state of agglomeration and was generally limited to about 80 pct theoretical density. Metallographic observations revealed that the nanocrystalline powders showed a high degree of agglomeration which resulted in a difficult-to-sinter bimodal pore distribution. Although nanoscale intraagglomerate porosity was easily eliminated in the course of sintering, microscale interagglomerate porosity largely proved to resist densification. Experimentally observed shrinkage rates exhibit two densification maxima at the onset and the end of densification. No significant grain growth was observed during sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Suryanarayana: Int. Mater. Rev., 1995, vol. 40, pp. 41–64.

    CAS  Google Scholar 

  2. J.R. Groza and R.J. Dowding: Nanostr. Mater., 1996, vol. 7, pp. 749–68.

    Article  CAS  Google Scholar 

  3. R.M. German: in Sintering Theory and Practice, R.M. German, ed., John Wiley and Sons, Oxford, United Kingdom, 1996, p. 158ff.

    Google Scholar 

  4. J.S. Lee, T.H. Kim, J.H. Yu, and S.W. Chung: Nanostr. Mater., 1997, vol. 9, pp. 153–56.

    Article  CAS  Google Scholar 

  5. C. Cheung, F. Djuanda, U. Erb, and G. Palumbo: Nanostr. Mater., 1995, vol. 5, pp. 513–23.

    Article  CAS  Google Scholar 

  6. S. Eroglu, S.C. Zhang, and G.L. Messing: J. Mater. Res., 1996, vol. 11, pp. 2131–34.

    CAS  Google Scholar 

  7. V. Hays, R. Marchand, G. Saindrenan, and E. Gaffet: Nanostr. Mater., 1996, vol. 7, pp. 411–20.

    Article  CAS  Google Scholar 

  8. F. Ge, L. Chen, W. Ku, and J. Zhu: Nanostr. Mater., 1997, vol. 8, pp. 703–09.

    Article  CAS  Google Scholar 

  9. S. Brunauer, P. Emmett, and E. Teller: J. Am. Cer. Soc., 1938, vol. 60, pp. 309–19.

    CAS  Google Scholar 

  10. G.K. Williamson and W.H. Hall: Acta Metall., 1953, vol. 1, pp. 22–31.

    Article  CAS  Google Scholar 

  11. R.M. German: Int. J. Powder Metall., 1996, vol. 32, pp. 365–73.

    CAS  Google Scholar 

  12. O. Dominguez and J. Bigot: Nanostr. Mater., 1995, vol. 6, pp. 877–80.

    Article  Google Scholar 

  13. D.L. Bourell and W.A. Kaysser: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 677–84.

    CAS  Google Scholar 

  14. Y.H. Zhou, M. Harmelin, and J. Bigot: Mater. Sci. Eng., 1991, vol. A133, pp. 775–79.

    CAS  Google Scholar 

  15. X.Y. Qin, J.S. Lee, and J.G. Kim: J. Appl. Phys., 1999, vol. 86, pp. 2146–54.

    Article  CAS  Google Scholar 

  16. D. Uskokovic, J. Petkovic, and M.M. Ristic: J. Sci. Sintering, 1976, vol. 8, p. 129ff.

  17. B. Million, J. Ruzickova, J. Velisek, and J. Vrestal: Mater. Sci. Eng., 1981, vol. 50, p. 43ff.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knorr, P., Nam, J.G. & Lee, J.S. Sintering behavior of nanocrystalline γ-Ni-Fe powders. Metall Mater Trans A 31, 503–510 (2000). https://doi.org/10.1007/s11661-000-0286-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0286-9

Keywords

Navigation