Skip to main content
Log in

Modeling thermomechanical fatigue life of high-temperature titanium alloy IMI 834

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A microcrack propagation model was developed to predict thermomechanical fatigue (TMF) life of high-temperature titanium alloy IMI 834 from isothermal data. Pure fatigue damage, which is assumed to evolve independent of time, is correlated using the cyclic J integral. For test temperatures exceeding about 600 °C, oxygen-induced embrittlement of the material ahead of the advancing crack tip is the dominating environmental effect. To model the contribution of this damage mechanism to fatigue crack growth, extensive use of metallographic measurements was made. Comparisons between stress-free annealed samples and fatigued specimens revealed that oxygen uptake is strongly enhanced by cyclic plastic straining. In fatigue tests with a temperature below about 500 °C, the contribution of oxidation was found to be negligible, and the detrimental environmental effect was attributed to the reaction of water vapor with freshly exposed material at the crack tip. Both environmental degradation mechanisms contributed to damage evolution only in out-of-phase TMF tests, and thus, this loading mode is most detrimental. Electron microscopy revealed that cyclic stress-strain response and crack initiation mechanisms are affected by the change from planar dislocation slip to a more wavy type as test temperature is increased. The predictive capabilities of the model are shown to result from the close correlation with the microstructural observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.P. Gabb, J. Gayda, P.A. Bartolatta, and M.G. Castelli: Int. J. Fatigue, 1993, vol. 15, pp. 413–22.

    Article  CAS  Google Scholar 

  2. P. Pototzky, H.J. Maier, and H.-J. Christ: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2995–3004.

    Article  CAS  Google Scholar 

  3. S.M. Russ, C.J. Boehlert, and D. Eylon: Mater. Sci. Eng., 1995, vols. A192–A193, pp. 483–89.

    Google Scholar 

  4. J. Dai, N.J. Marchand, and M. Hongoh: in Thermomechanical Fatigue Behavior of Materials: Second Volume, ASTM STP 1263, M.J. Verrilli and M.G. Castelli, eds., ASTM, Philadelphia, PA, 1996, pp. 187–209.

    Google Scholar 

  5. R.W. Neu and H. Sehitoglu: Metall. Trans. A, 1989, vol. 20A, pp. 1769–83.

    CAS  Google Scholar 

  6. M.P. Miller, D.L. McDowell, R.L.T. Oehmke, and S.D. Antolovich: in Thermomechanical Fatigue Behavior of Materials, ASTM STP 1186, H. Sehitoglu, ed., ASTM, Philadelphia, PA, 1993, pp. 35–49.

    Google Scholar 

  7. E.G. Ellison and A. Al-Zamily: Fatigue Fract. Eng. Mater. Struct., 1994, vol. 17, pp. 53–67.

    Article  Google Scholar 

  8. L. Remy, H. Bernard, J.L. Malpertu, and F. Rezai-Aria: in Thermomechanical Fatigue Behavior of Materials, ASTM STP 1186, H. Sehitoglu, ed., ASTM, Philadelphia, PA, 1993, pp. 3–16.

    Google Scholar 

  9. Z. Liu and G. Welsch: Metall. Trans. A, 1988, vol. 19A, pp. 527–42.

    CAS  Google Scholar 

  10. J. Reuchet and L. Remy: Metall. Trans. A, 1983, vol. 14A, pp. 141–49.

    Google Scholar 

  11. S.D. Antolovich: in Pressure Vessels and Piping: Design Technology—1982 A Decade of Progress, S.Y. Zamrik and D. Dietrich, eds., ASME, New York, NY, 1982, pp. 533–40.

    Google Scholar 

  12. M. Karayaka and H. Sehitoglu: Metall. Trans. A, 1991, vol. 22A, pp. 697–707.

    CAS  Google Scholar 

  13. M. Reger and L. Remy: Metall. Trans. A, 1988, vol. 19A, pp. 2259–68.

    CAS  Google Scholar 

  14. S. Esmaeili, C.C. Engler-Pinto, Jr., B. Ilschner, and F. Rezai-Aria: Scripta Metall. Mater., 1995, vol. 32, pp. 1777–81.

    Article  CAS  Google Scholar 

  15. H.-J. Christ, H. Mughrabi, S. Kraft, F. Petry, R. Zauter, and K. Eckert: in Fatigue under Thermal and Mechanical Loading—Mechanisms, Mechanics and Modelling, J. Bresser and L. Remy, eds., Kluwer Academic Publ., Dordrecht, The Netherlands, 1996, pp. 1–14.

    Google Scholar 

  16. J.K. Gregory: in Handbook of Fatigue Crack Propagation in Metallic Structures, A. Carpinteri, ed., Elsevier, Amsterdam, 1994, vol. 1, pp. 281–322.

    Google Scholar 

  17. H.J. Maier: Mater. High Temp., 1998, vol. 15, pp. 3–14.

    CAS  Google Scholar 

  18. R.P. Wei and M. Gao: Scripta Metall., 1983, vol. 17, pp. 959–62.

    Article  Google Scholar 

  19. N.E. Dowling: in Cyclic Stress-Strain and Plastic Deformation Aspects of Fatigue Crack Growth, ASTM STP 637, L.F. Impellizzeri, ed., ASTM, Philadelphia, PA, 1977, pp. 97–121.

    Google Scholar 

  20. J. Stringer: Acta Metall., 1960, vol. 8, pp. 758–66.

    Article  CAS  Google Scholar 

  21. C. Sarrazin-Baudoux, Y. Chabanne, and J. Petit: in Fracture from Defects, ECF 12, M.W. Brown, E.R. de los Rios, and K.J. Miller, eds., EMAS Publ., West Midlands, United Kingdom, 1998, vol. 1, pp. 315–20.

    Google Scholar 

  22. S. Lesterlin, C. Sarrazin-Baudoux, and J. Petit: in Titanium ’95: Science and Technology, P.A. Blenkinsop, W.J. Evans, and H.M. Flower, eds., The Institute of Materials, London, 1996, pp. 1211–18.

    Google Scholar 

  23. C. Sarrazin-Baudoux, S. Lesterlin, and J. Petit: in Titanium ’95: Science and Technology, P.A. Blenkinsop, W.J. Evans, and H.M. Flower, eds., The Institute of Materials, London, 1996, pp. 1895–1902.

    Google Scholar 

  24. Z. Liu and G. Welsch: Metall. Trans. A, 1988, vol. 19A, pp. 1121–25.

    CAS  Google Scholar 

  25. H. Nowack and T. Kordisch: Mat.-Wiss. Werkstofftech., 1998, vol. 29, pp. 215–28.

    Article  CAS  Google Scholar 

  26. H.J. Maier and H.-J. Christ: Int. J. Fatigue, 1997, vol. 19, pp. S267-S274.

    Article  CAS  Google Scholar 

  27. S. Hardt, H.J. Maier, and H.-J. Christ: Int. J. Fatigue, 1999, vol. 21, pp. 779–89.

    Article  CAS  Google Scholar 

  28. A. Gysler and S. Weissmann: Mater. Sci. Eng., 1977, vol. 27, pp. 181–93.

    Article  CAS  Google Scholar 

  29. D.F. Neal: in Titanium ’95: Science and Technology, P.A. Blenkinsop, W.J. Evans, and H.M. Flower, eds., The Institute of Materials, London, 1996, pp. 2195–2204.

    Google Scholar 

  30. C. Leyens, M. Peters, D. Weinem, and W.A. Kaysser: Metall. Mater. Trans. A., 1996, vol. 27A, pp. 1709–17.

    CAS  Google Scholar 

  31. J.C. Williams and G. Lutjering: in Titanium ’80: Science and Technology, H. Kimura and O. Izum, eds., TMS-AIME, Warrendale, PA, 1980, pp. 671–81.

    Google Scholar 

  32. H. Renner, H. Kestler, and H. Mughrabi: in Fatigue ’96, G. Lutjering and H. Nowak, eds., Elsevier, London, 1996, vol. II, pp. 935–40.

    Google Scholar 

  33. F. Torster, A. Gysler, and G. Lutjering: in Titanium ’95: Science and Technology, P.A. Blenkinsop, W.J. Evans, and H.M. Flower, eds., The Institute of Materials, London, 1996, pp. 1395–1402.

    Google Scholar 

  34. G.J. Baxter, W.M. Rainforth, and L. Grabowski: Acta Metall. Mater., 1996, vol. 44, pp. 3453–63.

    CAS  Google Scholar 

  35. M. Shimojo, R. Iguchi, T.H. Myeong, and Y. Higo: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1341–46.

    Article  CAS  Google Scholar 

  36. D.A. Miller and R.H. Priest: in High Temperature Fatigue: Properties and Life Prediction, R.P. Skelton, ed., Elsevier, London, 1987, pp. 113–75.

    Google Scholar 

  37. R. Zauter, F. Petry, H.-J. Christ, and H. Mugrabhi: in Thermomechanical Fatigue Behavior of Materials, ASTM STP 1186, H. Sehitoglu, ed., ASTM, Philadelphia, PA, 1993, pp. 70–90.

    Google Scholar 

  38. H.J. Maier and H.-J. Christ: Scripta Mater., 1996, vol. 34, pp. 609–15.

    Article  CAS  Google Scholar 

  39. D.F. Neal: in Titanium Science and Technology, G. Lutjering, U. Zwicker, and W. Bunk, eds., Deutsche Gesellschaft fur Metallkunde, Oberursel, 1985, pp. 2419–24.

    Google Scholar 

  40. B. Borchert and M.A. Dauebler: Proc. 6th World Conf. on Titanium, P. Lacombe, R. Tricot, and G. Beranger, eds., Les editions de Physiques, Les Ulis, France, 1988, pp. 467–72.

    Google Scholar 

  41. M. Peters, A. Gysler, and G. Lutjering: Metall. Trans. A, 1984, vol. 15A, pp. 1597–1605.

    CAS  Google Scholar 

  42. S.-H. Doong, D.F. Socie, and I.M. Robertson: J. Eng. Mater. Technol., Trans. ASME, 1990, vol. 112, pp. 456–64.

    Article  CAS  Google Scholar 

  43. H.H. Heitmann, H. Vehoff, and P. Neumann: in Advance in Fracture Research, ICF6, S.R. Valluri, D.M.R. Tuplin, P.R. Rao, J.F. Knott, and R. Dubey, eds., Pergamon Press, Oxford, United Kingdom, 1984, pp. 3599–3606.

    Google Scholar 

  44. J. Schijve: Eng. Fract. Mech., 1981, vol. 14, pp. 461–65.

    Article  Google Scholar 

  45. H. Ghonem and R. Foerch: Mater. Sci. Eng., 1991, vol. A138, pp. 69–81.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maier, H.J., Teteruk, R.G. & Christ, H.J. Modeling thermomechanical fatigue life of high-temperature titanium alloy IMI 834. Metall Mater Trans A 31, 431–444 (2000). https://doi.org/10.1007/s11661-000-0280-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0280-2

Keywords

Navigation