Skip to main content
Log in

Driving force for γε martensitic transformation and stacking fault energy of γ in Fe-Mn binary system

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A regular solution model for the difference of the chemical free energy between γ and ε phases during γε martensitic transformation in the Fe-Mn binary system has been reexamined and partly modified based on many articles concerning the M s and A s temperatures of Fe-Mn alloys. Using the regular solution model, the measured M s temperatures, and a thermodynamic model for the stacking fault energy (SFE) of austenite (γ), the driving force for γε martensitic transformation, and the SFE of γ have been calculated. The driving force for γε martensitic transformation increases linearly from − 68 to − 120 J/mole with increasing Mn content from 16 to 24 wt pct. The SFE of γ decreases to approximately 13 at. pct Mn and then increases with increasing Mn content, which is in better agreement with Schumann’s result rather than Volosevich et al.’s result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Zener: Trans. TMS-AIME, 1946, vol. 167, pp. 513–34.

    Google Scholar 

  2. L. Kaufman and M. Cohen: Trans. TMS-AIME, 1956, vol. 206, pp. 1393–1401.

    Google Scholar 

  3. A. Gilbert and W.S. Owen: Acta Metall., 1962, vol. 10, pp. 45–54.

    Article  CAS  Google Scholar 

  4. J.S. Pascover and S.V. Radcliff: Trans. TMS-AIME, 1968, vol. 242, pp. 673–83.

    CAS  Google Scholar 

  5. L. Kaufman: Trans. TMS-AIME, 1959, vol. 215, pp. 218–27.

    CAS  Google Scholar 

  6. G.L. Stepakoff and L. Kaufman: Acta Metall., 1968, vol. 16, pp. 13–22.

    Article  CAS  Google Scholar 

  7. F.W. Jones and W.I. Pumphery: J. Iron Steel Inst., 1949, vol. 163, pp. 121–31.

    CAS  Google Scholar 

  8. A. Holden, J.D. Bolton, and E.R. Petty: J. Iron Steel Inst., 1971, vol. 209, pp. 721–33.

    CAS  Google Scholar 

  9. K. Ishida: Scripta Metall., 1977, vol. 11, pp. 237–42.

    Article  CAS  Google Scholar 

  10. S. Takaki, H. Nakatsu, and Y. Tokunaga: Mater. Trans. JIM, 1993, vol. 34, pp. 489–96.

    CAS  Google Scholar 

  11. J.H. Yang and C.M. Wayman: Acta Metall. Mater., 1992, vol. 40, pp. 2025–31.

    Article  CAS  Google Scholar 

  12. H. Schumann: J. Kristall Technik, 1974, vol. 10, pp. 1141–50.

    Google Scholar 

  13. P. Yu. Volosevich, V.N. Grindnev, and Y.N. Petrov: Phys. Met. Metallogr., 1976, vol. 42, pp. 126–30.

    Google Scholar 

  14. H. Nakatsu and S. Takaki: J. Jpn. Inst. Met., 1996, vol. 60, pp. 141–50.

    CAS  Google Scholar 

  15. J.-H. Jun, Y.-K. Lee, and C.-S. Choi: J. Kor. Inst. Met. Mater., 1996, vol. 34, pp. 1399–406.

    CAS  Google Scholar 

  16. L.D. Blackburn, L. Kaufman, and M. Cohen: Acta Metall., 1965, vol. 13, pp. 533–45.

    Article  CAS  Google Scholar 

  17. J.F. Breedis and L. Kaufman: Metall. Trans., 1971, vol. 2, pp. 2359–71.

    Article  CAS  Google Scholar 

  18. K. Ishida and T. Nishizawa: J. Jpn. Inst. Met., 1972, vol. 36, pp. 1238–48.

    CAS  Google Scholar 

  19. M. Murakami and H. Otsuka: Proc. MRS, Materials Research Society, Tokyo, 1988, pp. 447–54.

    Google Scholar 

  20. K. Tsuzaki, M. Ikegami, Y. Tomota, and T. Maki: Iron Steel Inst. Jpn. Int., 1990, vol. 30, pp. 666–76.

    CAS  Google Scholar 

  21. M. Acet, T. Schneider, B. Gehrmann, and E.F. Wassermann: J. Phys., 1995, vol. 5, pp. C8-379–C8-384.

    Google Scholar 

  22. S.H. Cotes, A. Baruj, M. Sade, and G.A. Fernandez: J. Phys., 1995, vol. 5, pp. C2-83–C2-88.

    Google Scholar 

  23. T. Maki and K. Tsuzaki: Proc. ICOMAT-92, Monterey Institute of Advanced Studies, Monterey, CA, 1992, pp. 1151–60.

    Google Scholar 

  24. Y. Tomota, M. Strum, and J.W. Morris, Jr.: Metall. Trans. A, 1986, vol. 17A, pp. 537–47.

    CAS  Google Scholar 

  25. N.F. Mott and F.R.N. Nabarro: Dislocation Theory and Transient Creep, Bristol Conf., Physics Society, London, 1948, p. 1.

    Google Scholar 

  26. K. Tsuzaki, S. Fukasaku, Y. Tomota, and T. Maki: Mater. Trans. JIM, 1991, vol. 32, pp. 222–30.

    CAS  Google Scholar 

  27. T.Y. Hsu: Proc. ICOMAT-92, Monterey Institute of Advanced Studies, Monterey, CA, 1992, pp. 323–31.

    Google Scholar 

  28. G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7A, pp. 1897–1904.

    CAS  Google Scholar 

  29. P.Y. Volosevich, V.N. Grindney, and Y.N. Petrov: Phys. Met. Metallogr., 1975, vol. 40, pp. 90–94.

    Google Scholar 

  30. J.-H. Jun, H.-S. Choi, Y.-K. Lee, and C.-S. Choi: Proc. 9th Symp. on Mater. Mater. Properties, Korean Institute of Metals and Materials, Seoul, 1996, pp. 187–97.

    Google Scholar 

  31. H. Schumann: Arch. Eisenhuettenwes., 1969, vol. 40, pp. 1027–37.

    CAS  Google Scholar 

  32. I.N. Bogachev, V.F. Yegolayev, G.E. Zvigintseva, and L.V. Zhuravel: Phys. Met. Metallogr., 1969, vol. 28 (5), pp. 125–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, YK., Choi, C. Driving force for γε martensitic transformation and stacking fault energy of γ in Fe-Mn binary system. Metall Mater Trans A 31, 355–360 (2000). https://doi.org/10.1007/s11661-000-0271-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0271-3

Keywords

Navigation