Skip to main content
Log in

Differential scanning calorimetry and electron diffraction investigation on low-temperature aging in Al-Zn-Mg alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Differential scanning calorimetry (DSC) has been combined with transmission electron microscopy (TEM) to investigate the low-temperature decomposition processes taking place in an Al-5 wt pct Zn-1 wt pct Mg alloy. It was confirmed that two types of GP zones, i.e., GP(I) (solute-rich clusters) and GP(II) (vacancy-rich clusters), formed independently during decomposition of the supersaturated solid solution. The GP(I) zones form at a relatively low aging temperature and dissolve when the aging temperature is increased. The GP(II) zones are stable over a wider range of temperatures. To investigate the nature of the zones in the Al-Zn-Mg alloy, differential scanning calorimetry and transmission electron microscopy have also been carried out on binary Al-Zn alloys containing 5 wt pct and 10 wt pct Zn. In these Al-Zn alloys, GP zones formed rapidly during quenching, and they gave rise to characteristic electron diffraction patterns identical to those from GP(II) in the Al-Zn-Mg alloy system, implying that GP(II) zones in Al-Zn-Mg alloys are very similar to the zones formed in binary Al-Zn alloys. Thus, it is likely that GP(II) zones in Al-Zn-Mg alloys are zinc-rich clusters. In the Al-5 wt pct Zn-1 wt pct Mg alloy, both GP(I) and GP(II) were found to transform to η′ and/or η particles during heating in the differential scanning calorimeter. The η′ was also observed to form after prolonged isothermal aging of the Al-Zn-Mg alloy at 75 °C or after short aging times at 125 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Lendvai: Mater. Sci. Forum, 1996, vols. 217–222, pp. 43–56.

    Article  Google Scholar 

  2. H. Loffler, I. Kovacs, and J. Lendvai: J. Mater. Sci., 1983, vol. 18, pp. 2215–40.

    Article  Google Scholar 

  3. J. Lendvai: Cryst. Res. Technol., 1984, vol. 19, pp. 1341–46.

    Article  CAS  Google Scholar 

  4. H. Schmalzried and V. Gerold: Z. Metallkd., 1958, vol. 49, pp. 291–301.

    CAS  Google Scholar 

  5. C.E. Lyman and J.B. Vander Sande: Metall. Trans. A, 1976, vol. 7A, pp. 1211–16.

    CAS  Google Scholar 

  6. G.W. Lorimer and R.B. Nicholson: Acta Metall., 1966, vol. 14, pp. 1009–13.

    Article  CAS  Google Scholar 

  7. N. Ryum: Z. Metallkd., 1975, vol. 66, pp. 338–43, 344–46, and pp. 377–88.

    CAS  Google Scholar 

  8. K. Stiller, P.J. Warren, V. Hansen, J. Angenete, and J. Gjønnes: Mater. Sci. Eng. A, 1999, vol. A270, pp. 55–63.

    CAS  Google Scholar 

  9. K. Stiller, V. Hansen, M. Knutson-Wedel, G. Waterloo, and J. Gjønnes: in Aluminum Alloys—Their Physical and Mechanical Properties, Proc. 6th Int. Conf. on Aluminum Alloys, Toyohashi, Japan, July 5–10, S. Kumai, T. Kobayashi, and Y. Murakami, eds., Japan Inst. Light Metals, Tokyo, Japan, 1998, pp. 615–20.

    Google Scholar 

  10. L.F. Mondolfo: Metall. Rev., 1971, vol. 16, pp. 95–124.

    Google Scholar 

  11. G. Thomas and J. Nutting: J. Inst. Met., 1959–60, vol. 88, pp. 81–90.

    Google Scholar 

  12. R. DeIasi and P.N. Adler: Metall. Trans. A, 1977, vol. 8A, pp. 1177–83.

    CAS  Google Scholar 

  13. P.N. Adler and R. DeIasi: Metall. Trans. A, 1977, vol. 8A, pp. 1185–90.

    CAS  Google Scholar 

  14. M. Radomsky, O. Kabisch, H. Loffler, J. Lendvai, T. Ungar, I. Kovacs, and G. Honyek: J. Mater. Sci., 1979, vol. 14, pp. 2906–12.

    Article  CAS  Google Scholar 

  15. K. Asano and K. Hirano: Trans. Jpn. Inst. Met., 1968, vol. 9, pp. 149–56.

    CAS  Google Scholar 

  16. S. Yannacopoulos, S.O. Kasap, A. Hedayat and A. Verma: Can. Met. Q., 1994, vol. 33, pp. 51–60.

    CAS  Google Scholar 

  17. J.L. Petty-Galis and R.D. Goolsby: J. Mater. Sci., 1989, vol. 24, pp. 1439–46.

    Article  CAS  Google Scholar 

  18. R.J. Livak and J.M. Papazian: Scripta Metall., 1984, vol. 18, pp. 483–88.

    Article  CAS  Google Scholar 

  19. A. Zahra, C.Y. Zahra, M. Laffitte, W. Lacom, and H.P. Degischer: Z. Metallkd., 1979, vol. 70, pp. 172–79.

    CAS  Google Scholar 

  20. C. Garcia-Cordovilla and E. Louis: Mater. Sci. Eng. A, 1991, vol. A132, pp. 135–41.

    CAS  Google Scholar 

  21. A.K. Mukhopadhyay, Q.B. Yang, and S.R. Singh: Acta Metall. Mater., 1994, vol. 42, pp. 3083–91.

    Article  CAS  Google Scholar 

  22. D.J. Lloyd and M.C. Chaturvedi: J. Mater. Sci., 1982, vol. 17, pp. 1819–25.

    Article  CAS  Google Scholar 

  23. P. Howard, R. Pilkington, G.W. Lorimer, and F.R. Sale: High Temp.-High Press., 1985, vol. 17, pp. 123–29.

    CAS  Google Scholar 

  24. G. Honyek, I. Kovacs, J. Lendvai, NG-Huy-Sinh, T. Ungar, H. Loffler, and R. Gerlach: J. Mater. Sci., 1981, vol. 16, pp. 2701–09.

    Article  CAS  Google Scholar 

  25. W. Lacom, H.P. Degischer, A.M. Zahra, and C.Y. Zahra: Scripta Metall., 1980, vol. 14, pp. 253–54.

    Article  CAS  Google Scholar 

  26. X.J. Jiang, B. Noble, B. Holme, G. Waterloo, and J. Tafto: Scientific Report, University of Oslo, Oslo, Norway, Nov. 10, 1998.

    Google Scholar 

  27. V. Hansen, L.K. Berg, M. Knutson-Wedel, K. Stiller, G. Waterloo, and J. Gjønnes: in Electron Microscopy 1998, Proc. ICEM14, Cancun, Mexico, Aug. 31– Sept. 4, 1998, Symp. U, 1998, vol. II, pp. 161–62.

  28. K. Ohshima and D. Watanabe: Acta Cryst., 1973, vol. A29, pp. 520–26.

    Google Scholar 

  29. M. Murakami, O. Kawano, and Y. Murakami: Acta Metall., 1969, vol. 17, pp. 29–40.

    Article  CAS  Google Scholar 

  30. A. Zahra, C.Y. Zahra, and J.C. Mathieu: Z. Metallkd., 1980, vol. 71, pp. 54–56.

    CAS  Google Scholar 

  31. A. Zahra, C.Y. Zahra, and M. Laffitte: Z. Metallkd., 1979, vol. 70, pp. 669–73.

    CAS  Google Scholar 

  32. H.P. Degischer, C.Y. Zahra, and A. Zahra: Z. Metallkd., 1982, vol. 73, pp. 635–40.

    CAS  Google Scholar 

  33. A. Zahra, C.Y. Zahra, A. Charai, and C. Boulesteix: J. Therm. Analy., 1985, vol. 30, pp. 671–75.

    Article  CAS  Google Scholar 

  34. G. Jurgens, M. Kempe, and H. Loffler: Phys. Status Solidi (a), 1974, vol. 25, pp. K73-K76.

    Article  Google Scholar 

  35. S.E. Næss: Scripta Metall., 1969, vol. 3, pp. 179–82.

    Article  Google Scholar 

  36. H. Suzuki, M. Kanno, and S. Asami: J. Jpn. Inst. Light Met., 1972, vol. 22, pp. 269–74.

    Google Scholar 

  37. N. Ryum: Acta Metall., 1969, vol. 17, pp. 821–30.

    Article  CAS  Google Scholar 

  38. G. Jurgens, M. Kempe, and H. Loffler: Phys. Status Solidi (a), 1974, vol. 21, pp. K39-K41.

    Article  Google Scholar 

  39. M. Ohta and F. Hashimoto: J. Phys. Soc. Jpn., 1964, vol. 19, p. 130.

    Article  CAS  Google Scholar 

  40. A. Guinier: Solid State Phys., 1959, vol. 9, pp. 293–398.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, X.J., Tafto, J., Noble, B. et al. Differential scanning calorimetry and electron diffraction investigation on low-temperature aging in Al-Zn-Mg alloys. Metall Mater Trans A 31, 339–348 (2000). https://doi.org/10.1007/s11661-000-0269-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0269-x

Keywords

Navigation