Skip to main content
Log in

Microstructural evolution during laser cladding of M2 high-speed steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Laser cladding of gas-atomized M2 high-speed steel on the mild steel substrate was performed using scan rates of 1 to 10 mm/s, scan line spacings of 0.1 to 0.5 mm, and powder feed rates of 1 to 10 g/min, for a given laser power of 400 W. This article presents a detailed study of the microstructural evolution during laser cladding. The effect of scan rate, scan line spacing, and powder feed rate on cooling rate can be described in terms of the cladding-layer thickness, i.e., the thinner the layer, the higher the cooling rate. The degree of metastability in the laser-clad microstructure can be understood in terms of the lattice parameter of the bcc phase. The lattice parameter of the bcc phase increased with increasing layer thickness and reached a maximum value at a thickness of 0.3 mm. Correspondingly, the microstructure varied from a cellular or dendritic structure of δ ferrite and austenite to a mixture of martensite and retained austenite. However, further increasing the layer thickness led to a decrease of both the lattice parameters of the bcc phase and the proportion of retained austenite in the martensite. This was accompanied by an increase of the amount of carbide at the prior austenitic grain boundaries and a decrease of the carbon content in the martensite and retained austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Singh: J. Mater. Sci., 1994, vol. 29, pp. 5232–58.

    Article  CAS  Google Scholar 

  2. Y.P. Hu, C.W. Chen, and K. Mukherjee: J. Mater. Sci., 1998, vol. 33, pp. 1287–92.

    Article  CAS  Google Scholar 

  3. G. Hoyle: High Speed Steel, Butterworth & Co. Ltd., London, 1988, pp. 1–5.

    Google Scholar 

  4. R.H. Barkalow, R.W. Kraft, and J.I. Goldstein: Metall. Trans., 1972, vol. 3, pp. 919–26.

    CAS  Google Scholar 

  5. E.J. Galda and R.W. Kraft: Metall. Trans., 1974, vol. 5, pp. 1727–33.

    CAS  Google Scholar 

  6. D.A. Porter and K.E. Easterling: Phase Transformation in Metals and Alloys, 2nd ed., Chapman & Hall, London, 1997, pp. 251–55.

    Google Scholar 

  7. F.A. Kirk: Powder Metall., 1981, vol. 24, pp. 70–74.

    CAS  Google Scholar 

  8. J.J. Rayment and B. Cantor: Met. Sci., 1978, vol. 12, pp. 156–63.

    CAS  Google Scholar 

  9. Young-Won Kim, P.R. Strutt, and H. Nowotny: Metall. Trans. A, 1979, vol. 10A, pp. 881–86.

    CAS  Google Scholar 

  10. Leif Ahman: Metall. Trans., 1984, vol. 15A, pp. 1829–35.

    Google Scholar 

  11. A. Tauqir, H. Nowotny, and P.R. Strutt: Metall. Trans., 1990, vol. 21A, pp. 3021–26.

    CAS  Google Scholar 

  12. C. Kim: J. Heat Treating, 1979, vol. 1, pp. 43–51.

    CAS  Google Scholar 

  13. F.R. Wilson and B.A. Harding: BCIRA J., 1989, vol. 37, pp. 318–31.

    Google Scholar 

  14. S.A. David and J.M. Vitek: Int. Mater. Rev., 1989, vol. 34, pp. 213–45.

    CAS  Google Scholar 

  15. H. Fredriksson: Met. Sci., 1976, vol. 10, pp. 77–86.

    Article  CAS  Google Scholar 

  16. R.W.K. Honeycombe and H.K.D.H. Bhadeshia: Steels, 2nd ed., Edward Arnold, London, 1995, pp. 89–96.

    Google Scholar 

  17. P.A. Molian and H.S. Rajasekhara: J. Mater. Sci. Lett., 1986, vol. 5, pp. 1292–94.

    Article  CAS  Google Scholar 

  18. H. Fredriksson and J. Stjerndahl: Met. Sci., 1982, vol. 16, pp. 575–84.

    Article  CAS  Google Scholar 

  19. P.R. Strutt, M. Tuli, M. Nowotny, and B.K. Har: Mater. Sci. Eng., 1978, vol. 36, pp. 217–22.

    Article  CAS  Google Scholar 

  20. N. Suutala: Metall. Trans., 1983, vol. 14A, pp. 191–97.

    Google Scholar 

  21. S.J. Donachie and G.S. Ansell: Metall. Trans., 1975, vol. 6A, pp. 1863–75.

    CAS  Google Scholar 

  22. R. Sare and R.W.K. Honeycombe: J. Mater. Sci., 1978, vol. 13, pp. 1991–2002.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, H.J., Chang, I.T.H. Microstructural evolution during laser cladding of M2 high-speed steel. Metall Mater Trans A 31, 2615–2625 (2000). https://doi.org/10.1007/s11661-000-0206-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0206-z

Keywords

Navigation