Skip to main content
Log in

Simulation of polymer removal from a powder injection molding compact by thermal debinding

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Powder injection molding (PIM) is an important net-shape manufacturing process. Thermal debinding is a common methodology for the final removal of residual polymer from a PIM compact prior to sintering. This process is an intricate combination of evaporation, liquid and gas migration, pyrolysis of polymer, and heat transfer in porous media. A better understanding of thermal debinding could lead to optimization of the process to prevent the formation of defects. Simulation of the process based on an integrated mathematical model for mass and heat transfer in porous media is proposed. The mechanisms of mass transport, i.e., liquid flow, gas flow, vapor diffusion, and convection, as well as the phase transitions of polymer, and their interactions, are included in the model. The macroscopic partial differential equations are formulated by volume averaging of the microscopic conservation laws. The basic equations consist of mass conservation and energy conservation and are solved numerically. Polymer residue, pressure, and temperature distributions are predicted. The importance of the various mass transfer mechanisms is evaluated. The effects of key mass transfer parameters on thermal debinding are discussed. It is revealed from the results that the assumed binder front, which is supposed to recede into the powder compact as removal progresses, does not exist. The mass flux of polymer liquid is of the same order of the mass flux of polymer vapor in the gas phase, and the polymer vapor diffusion in the liquid phase is negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.M. German: Int. J. Powder Metall., 1987, vol. 23 (4), pp. 237–45.

    CAS  Google Scholar 

  2. P. Calvert and M. Cima: J. Am. Ceram. Soc., 1990, vol. 73 (3), pp. 575–79.

    Article  CAS  Google Scholar 

  3. M.R. Barone and J.C. Ulicny: J. Am. Ceram. Soc., 1990, vol. 73 (11), pp. 3323–33.

    Article  CAS  Google Scholar 

  4. G.C. Stangle and I.A. Aksay: Chem. Eng. Sci., 1990, vol. 45 (7), pp. 1719–31.

    Article  CAS  Google Scholar 

  5. D.-S. Tsai: AIChE J., 1991, vol. 37 (4), pp. 547–54.

    Article  CAS  Google Scholar 

  6. J.R.G. Evans, M.J. Edirisinghe, J.K. Wright, and J. Crank: Proc. R. Soc. London A, 1991, vol. 432, pp. 321–40.

    Article  CAS  Google Scholar 

  7. S.A. Mater, M.J. Edirisinghe, J.R.G. Evans, E.H. Twizell, and J.H. Song: J. Mater. Sci., 1995, vol. 30, pp. 3805–10.

    Article  Google Scholar 

  8. J.A. Lewis and M.A. Galler, J. Am. Ceram. Soc., 1996, vol. 79 (5), pp. 1377–88.

    Article  CAS  Google Scholar 

  9. A. Maximenko and O. Van Der Biest: J. Eur. Ceram. Soc., 1998, vol. 18, pp. 1001–09.

    Article  CAS  Google Scholar 

  10. M.J. Cima, J.A. Lewis, and A. Devoe: J. Am. Ceram. Soc., 1989, vol. 72 (7), pp. 1192–99.

    Article  CAS  Google Scholar 

  11. J.A. Lewis and M.J. Cima: in Ceramic Transactions, Ceramic Powder Science III, G.L. Messing, S. Hirano, and H. Hausner, eds., American Ceramic Society, Westerville, OH, 1990, vol. 12, pp. 583–90.

    Google Scholar 

  12. S. Whitaker: in Advances in Heat Transfer, Academic Press, New York, NY, 1977, vol. 13, pp. 119–203.

    Google Scholar 

  13. D.M. Himmelblau: Basic Principles and Calculations in Chemical Engineering, 5th ed. Simon & Schuster Pte Ltd., 1992.

  14. C.Y. Wang and P. Cheng: Int. J. Heat Mass Transfer, 1996, vol. 39 (17), pp. 3607–18.

    Article  CAS  Google Scholar 

  15. E.L. Cussler: Diffusion: Mass Transfer in Fluid Systems, Cambridge University Press, Cambridge, United Kingdom, 1984.

    Google Scholar 

  16. P.J. Flory: Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY, 1953, pp. 495–540.

    Google Scholar 

  17. C.D. Doyle: in Techniques and Methods of Polymer Evaluation, vol. I. Thermal Analysis, P.E. Slade and L.T. Jenkins, eds., Edward Arnold, London 1966, pp. 113–234.

    Google Scholar 

  18. S.V. Patanker: Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Co., New York, NY, 1980.

    Google Scholar 

  19. M.R. Barone, J.C. Ulicny, R.R. Hengst, and J.P. Pollinger: in Ceramic Transactions, Ceramic Powder Science II, A, C.L. Messing, E.R. Fuller, and H. Hausner, Jr., eds., The American Ceramic Society, Westerville, OH, 1988, vol. 1, pp. 575–83.

    Google Scholar 

  20. D.W. Sproson and G.L. Messing: in Ceramic Transactions, Ceramic Powder Science II, A, C.L. Messing, E.R. Fuller, and H. Hausner, Jr., eds., The American Ceramic Society, Inc., Westerville, OH, 1988, vol. 1, pp. 528–37.

    Google Scholar 

  21. S.R. Su: Synthesis and Processing of Ceramics: Scientific Issues, Materials Research Society Symposia Proceedings, W.E. Rhine, T.M. Shaw, R.J. Cottschall, and Y. Chen, eds., Materials Research Society, Pittsburgh, PA, 1992, vol. 249, pp. 345–51.

    Google Scholar 

  22. K.S. Hwang and T.H. Tsou: Metall. Trans. A, 1992, vol. 23A, pp. 2775–82.

    CAS  Google Scholar 

  23. R.M. German: Powder Technol., 1981, vol. 30, pp. 81–86.

    Article  Google Scholar 

  24. A.E. Scheidegger: The Physics of Flow through Porous Media, 3rd ed., University of Toronto Press, Toronto, 1974.

    Google Scholar 

  25. L. Riedel: Chem. Ing. Technol., 1954, vol. 26, p. 679.

    Article  CAS  Google Scholar 

  26. R.C. Ried, J.M. Prausintz, and B.E. Poling: The Properties of Gases & Liquids, 4th ed., McGraw-Hill, Inc., New York, NY, 1987.

    Google Scholar 

  27. K.M. Watson: Ind. Eng. Chem., 1943, vol. 35, p. 398.

    Article  CAS  Google Scholar 

  28. H. Vogel: Phys. Z., 1921, vol. 22, p. 645.

    CAS  Google Scholar 

  29. P.D. Neufeld, A.R. Janzen, and R.A. Aziz: J. Chem. Phys., 1972, vol. 57, p. 1100.

    Article  CAS  Google Scholar 

  30. C.R.J. Wilke: Chem. Phys., 1950, vol. 18, p. 517.

    Article  CAS  Google Scholar 

  31. L.D. Baver and W.H. Gardner: Soil Physics, 4th ed., Wiley, New York, NY, 1972.

    Google Scholar 

  32. J.L. Duda, J.S. Vrentas, S.T. Ju, and H.T. Liu: AIChE J., 1982, vol. 28, pp. 279–85.

    Article  CAS  Google Scholar 

  33. E.A. Mason, A.P. Malinauskas, and R.B. Evans: J. Chem. Phys., 1967, vol. 46, pp. 3199–21.

    Article  CAS  Google Scholar 

  34. N. Wakao and J.M. Smith: Chem. Eng. Sci., 1962, vol. 17, pp. 825–34.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lam, Y.C., Yu, S.C.M., Tam, K.C. et al. Simulation of polymer removal from a powder injection molding compact by thermal debinding. Metall Mater Trans A 31, 2597–2606 (2000). https://doi.org/10.1007/s11661-000-0204-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0204-1

Keywords

Navigation