Metallurgical and Materials Transactions A

, Volume 31, Issue 10, pp 2559–2568 | Cite as

A dynamic model for the interaction between a solid particle and an advancing solid/liquid interface

  • Adrian V. Catalina
  • Sundeep Mukherjee
  • Dorum Stefanescu


Most models that describe the interaction of an insoluble particle with an advancing solid-liquid interface are based on the assumption of steady state. However, as demonstrated by experimental work, the process does not reach steady state until the particle is pushed for a while by the interface. In this work, a dynamic mathematical model was developed. The dynamic model demonstrates that this interaction is essentially non-steady state and that steady state eventually occurs only when solidification is conducted at subcritical velocities. The model was tested for three systems: aluminum-zirconia particles, succinonitrile-polystyrene particles, and biphenyl-glass particles. The calculated values for critical velocity of the pushing/engulfment transition were in the same range with the experimental ones.


Material Transaction Particle Velocity Drag Force Critical Velocity Particle Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.N. Omenyi and A.W. Neumann: J. Appl. Phys., 1976, vol. 47 (9), pp. 3956–62.CrossRefGoogle Scholar
  2. 2.
    A.A. Chernov, D.E. Temkin, and A.M. Mel’nikova: Sov. Phys. Crystallogr., 1977, vol. 22 (6), pp. 656–58.Google Scholar
  3. 3.
    A.A. Chernov, D.E. Temkin, and A.M. Mel’nikova: Sov. Phys. Crystallogr., 1976, vol. 21 (4), pp. 369–73.Google Scholar
  4. 4.
    G.F. Bolling and J.A. Cissé: J. Cryst. Growth, 1971, vol. 10, pp. 56–66.CrossRefGoogle Scholar
  5. 5.
    C. Korber G. Rau, M.D. Causman, and E.G. Cravalho: J. Cryst. Growth, 1985, vol. 72, pp. 649–62.CrossRefGoogle Scholar
  6. 6.
    J. Pötschke and V. Rogge: J. Cryst. Growth, 1989, vol. 94, pp. 726–38.CrossRefGoogle Scholar
  7. 7.
    D.K. Shangguan, S. Ahuja, and D.M. Stefanescu: Metall. Trans. A, 1992, vol. 23A, pp. 669–80.Google Scholar
  8. 8.
    R. Sasikumar, T.R. Ramamohan, and B.C. Pai: Acta Metall., 1989, vol. 37 (7), pp. 2085–91.CrossRefGoogle Scholar
  9. 9.
    L. Hadgi: Phys. Rev. E, 1999, vol. 60 (5), pp 6180–83CrossRefGoogle Scholar
  10. 10.
    C. Schvezov: in Solidification 1999, W.H. Hofmeister, J.R. Rogers, N.B. Singh, S.P. Marsh, and P.W. Vorhees, eds., TMS, Warrendale, PA, 1999, pp. 251–61Google Scholar
  11. 11.
    A.V. Catalina and D.M. Stefanescu: in Solidification 1999, W.H. Hofmeister, J.R. Rogers, N.B. Singh, S.P. Marsh, and P.W. Vorhees, eds., TMS, Warrendale, PA, 1999, pp. 273–82.Google Scholar
  12. 12.
    S. Sen, B.K. Dhindaw, D.M. Stefanescu, A.V. Catalina, and P.A. Curreri: J. Cryst. Growth, 1997, vol. 173, pp. 574–84.CrossRefGoogle Scholar
  13. 13.
    A. Cotrell: Introduction to the Modern Theory of Metals, The Institute of Metals, London, 1988.Google Scholar
  14. 14.
    D.R. Uhlmann, B. Chalmers, and K.A. Jackson: J. Appl. Phys., 1964, vol. 35, pp. 2986–93.CrossRefGoogle Scholar
  15. 15.
    J. Happel and H. Brenner: Low Reynolds Number Hydrodynamics, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1965.Google Scholar
  16. 16.
    H. Brenner: Chem. Eng. Sci., 1961, vol. 16, pp. 242–51.CrossRefGoogle Scholar
  17. 17.
    L.G. Leal: Laminar Flow and Convective Transport Processes—Scaling Principles and Asymptotic Analysis, Butterworth-Heinemann, London, 1992.Google Scholar
  18. 18.
    D.M. Stefanescu, F.R. Juretzko, B.K. Dhindaw, A.V. Catalina, S. Sen, and P.A. Curreri: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1697–1706.CrossRefGoogle Scholar
  19. 19.
    D.M. Stefanescu, F.R. Juretzko, B.K. Dhindaw, S. Sen, and P.A. Curreri: NASA Microgravity Materials Science Conf., D.C. Gillies and D.E. McCauley, eds., NASA Marshall Space Flight Center, Huntsville, AL, 1999, p. 599.Google Scholar
  20. 20.
    A.V. Catalina: Ph.D. Dissertation, University of Alabama, Tuscaloosa, AL, Apr. 2000.Google Scholar
  21. 21.
    A.V. Catalina and D.M. Stefanescu: Modeling of Casting & Solidification Processes, 1999, C.P. Hong, J.K. Choi and D.H. Kim eds., Hanrimwon, Seoul, Korea, 2000, pp. 3–11.Google Scholar
  22. 22.
    J.O. Hinze: Turbulence, Mc-Graw-Hill, New York, NY, 1975, p. 463.Google Scholar
  23. 23.
    R.J. Brodkey: The Phenomena of Fluid Motions, Addison-Wesley, Reading, MA, 1967, p. 621.Google Scholar
  24. 24.
    J. Szekely: Fluid Flow Phenomena in Metal Processing, Academic Press, New York, NY, 1979, pp. 260–64.Google Scholar
  25. 25.
    J. Klein and E. Kumacheva: Science, 1995, vol. 269, pp. 816–19.CrossRefGoogle Scholar
  26. 26.
    J. Klein and E. Kumacheva: J. Chem. Phys., 1998, vol. 108 (16), pp. 6996–7009.CrossRefGoogle Scholar
  27. 27.
    T. Iida and R.I.L. Guthrie: The Physical Properties of Liquid Metals, Clarendon Press, Oxford, United Kingdom, 1988, p. 27.Google Scholar
  28. 28.
    K.A. Hoffmann and S.T. Chiang: Computational Fluid Dynamics for Engineers, Engineering Education SystemTN, Wichita, KS, 1993, vol. 1.Google Scholar
  29. 29.
    H. Lamb: Hydrodynamics, 6th ed., Cambridge University Press, Cambridge, MA, 1932.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2000

Authors and Affiliations

  • Adrian V. Catalina
    • 1
  • Sundeep Mukherjee
    • 2
  • Dorum Stefanescu
    • 2
  1. 1.NASA/Marshall Space Flight Centerthe Universities Space Research AssociationHuntsville
  2. 2.the Solidification LaboratoryThe University of AlabamaTuscaloosa

Personalised recommendations