Skip to main content
Log in

Microstructural evolution at the bonding interface during the early-stage infrared active brazing of alumina

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Infrared brazing of Al2O3 and alloy 42 using a silver-base active braze alloy was investigated at 900 °C for 0 to 300 seconds, with a heating rate of 3000 °C/min. Experimental results show that Ti3(Cu, Al)3O intermetallic with various amounts of Al is observed in the reaction layer and plays an important role in the early stage of reactive wetting. A two-layer structure is observed at the reaction interface brazed at 900 °C for 5 seconds. The reaction layer close to the alumina contains large amounts of Al, so the mass balance of the system is maintained. The growth of the reaction layer is not rate controlled by diffusion within the first 120 seconds. After 120 seconds, the rate controlling mechanism of the reaction layer becomes the diffusion control, satisfying the parabolic law. Dynamic wetting angle measurements using a traditional vacuum furnace at the heating rate of 10 °C/min demonstrate that the wetting angle rapidly decreases within the first 150 seconds, especially 0 to 80 seconds, and eventually stabilizes after 600 seconds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Lugscheider and W. Tillmann: Mater. Manufacturing Processes, 1993, vol. 8, pp. 219–38.

    CAS  Google Scholar 

  2. G. Humpston and D.M. Jacobson: Principles of Soldering and Brazing, ASM INTERNATIONAL, Materials Park, OH, 1993, pp. 111–18.

    Google Scholar 

  3. M.M. Schwartz: Brazing, ASM INTERNATIONAL, Materials Park, OH, 1987, pp. 116–25.

    Google Scholar 

  4. M.M. Schwartz: Ceramic Joining, ASM INTERNATIONAL, Materials Park, OH, 1989, pp. 75–139.

    Google Scholar 

  5. A.P. Xian: J. Mater. Sci., 1993, vol. 28, pp. 1019–30.

    Article  CAS  Google Scholar 

  6. A.K. Chattopadhyay and H.E. Hintermann: J. Mater. Sci., 1993, vol. 28, pp. 5887–93.

    Article  CAS  Google Scholar 

  7. F. Tamai and M. Naka: J. Mater. Sci. Lett., 1996, vol. 15, pp. 1353–54.

    CAS  Google Scholar 

  8. N. Iwamoto, Y. Makino, and H. Miyata: Trans. JWRI, 1986, vol. 15(1), pp. 55–59.

    CAS  Google Scholar 

  9. M. Naka, H. Taniguchi, and I. Okamoto: Trans. JWRI, 1990, vol. 19 (2), pp. 29–34.

    Google Scholar 

  10. R.R. Kapoor and T.W. Eagar: Metall. Trans. B, 1989, vol. 20B, pp. 919–24.

    CAS  Google Scholar 

  11. P.R. Chidambaram, G.R. Edwards, and D.L. Olson: Metall. Mater. Trans., 1994, vol. 25A, pp. 2083–90.

    CAS  Google Scholar 

  12. J.G. Li: Ceram. Int., 1994, vol. 20, pp. 391–412.

    Article  CAS  Google Scholar 

  13. C. Odegard and A. Bronson: JOM, 1997, vol. 49 (6), pp. 52–54.

    CAS  Google Scholar 

  14. M. Naka, T. Tanaka, and I. Okamoto: Trans. JWRI, 1985, vol. 14 (2), pp. 85–91.

    Google Scholar 

  15. M. Naka, K. Sampath, I. Okamoto, and Y. Arata: Trans. JWRI, 1983, vol. 12 (2), pp. 181–83.

    Google Scholar 

  16. Y. Nakao, K. Nishimoto, and K. Saida: Trans. Jpn. Welding Soc., 1989, vol. 20 (1), pp. 66–76.

    CAS  Google Scholar 

  17. D.L. Olson et al.: ASM Handbook, vol. 6, Welding, Brazing and Soldering, ASM INTERNATIONAL, Materials Park, OH, 1993, pp. 948–60.

    Google Scholar 

  18. M. Nomura, C. Iwamoto, and S.I. Tanaka: Acta Mater., 1999, vol. 47 (2), pp. 407–13.

    Article  CAS  Google Scholar 

  19. R.E. Loehman and A.P. Tomsia: Acta Mater., 1992, vol. 40, Suppl., pp. S75-S83.

    CAS  Google Scholar 

  20. R.E. Loehman and A.P. Tomsia: J. Am. Ceram. Soc., 1994, vol. 77, pp. 271–74.

    Article  CAS  Google Scholar 

  21. A. Meier, P.R. Chidambaram, and G.R. Edwards: Acta Mater., 1998, vol. 46, 12, pp. 4453–67.

    Article  CAS  Google Scholar 

  22. P. Kritsalis, L. Coudurier, and N. Eustathopoulos: J. Mater. Sci., 1991, vol. 26, pp. 3400–08.

    Article  CAS  Google Scholar 

  23. W. Tillmann and E. Lugscheider: J. Mater. Sci., 1996, vol. 31, pp. 445–52.

    Article  CAS  Google Scholar 

  24. F. Tamai and K. Hirano: JSME Int. J., 1996, vol. 39A, pp. 613–19.

    Google Scholar 

  25. F. Ernst: Mater. Sci. Eng., R 14, 1995, No. 3, pp. 97–156.

    Google Scholar 

  26. S.J. Lee, S.K. Wu, and R.Y. Lin: Acta Mater., 1998, vol. 46, pp. 1283–95.

    Article  CAS  Google Scholar 

  27. S.J. Lee, S.K. Wu, and R.Y. Lin: Acta Mater., 1998, vol. 46, pp. 1297–1305.

    Article  CAS  Google Scholar 

  28. T.B. Massalski et al.: Binary Alloy Phase Diagrams, 2nd ed., ASM INTERNATIONAL, Materials Park, OH, 1990, pp. 1494–96.

    Google Scholar 

  29. P. Villars, A. Prince, and H. Okamoto: Handbook of Ternary Alloy Phase Diagrams, ASM INTERNATIONAL, Materials Park, OH, 1996, pp. 2353–60.

    Google Scholar 

  30. T. Torvund, O. Grong, O.M. Akselsen, and J.H. Ulvensoen: J. Mater. Sci., 1997, vol. 32, pp. 4437–42.

    Article  CAS  Google Scholar 

  31. D.B. Lee, J.H. Woo, and S.W. Park: Mater. Sci. Eng., 1999, vol. A268, pp. 202–07.

    CAS  Google Scholar 

  32. G. Wang and J.J. Lannutti: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1499–1506.

    CAS  Google Scholar 

  33. A. Mortensen, F. Hodaj, and N. Eustathopoulos: Scripta Mater., 1998, vol. 38, pp. 1411–17.

    Article  CAS  Google Scholar 

  34. N. Eustathopoulos: Acta Mater., 1998, vol.46, pp. 2319–27.

    Article  CAS  Google Scholar 

  35. D.R. Poirier and G.H. Geiger: Transport Phenomena in Materials Processing, TMS, Warrendale, PA, 1994, pp. 448–53.

    Google Scholar 

  36. M. Naka, J.C. Feng, and J.C. Schuster: Metal. Mater. Trans., 1997, vol. 28A, pp. 1385–90.

    CAS  Google Scholar 

  37. H. Xiong, C. Wan, and Z. Zhou: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2591–96.

    Article  CAS  Google Scholar 

  38. E. Saiz, A.P. Tomsia, and R.M. Cannon: Acta Mater., 1998, vol. 46, pp. 2349–61.

    Article  CAS  Google Scholar 

  39. K.F. Lin and C.C. Lin: Scripta Mater., 1998, vol. 39, pp. 1333–38.

    Article  CAS  Google Scholar 

  40. C. Iwamoto and S.I. Tanaka: Acta Mater., 1998, vol. 46, pp. 2381–86.

    Article  CAS  Google Scholar 

  41. S.D. Peteves, M. Paulasto, G. Ceccone, and V. Stamos: Acta Mater., 1998, vol. 46, pp. 2407–14.

    Article  CAS  Google Scholar 

  42. G. Dehm, C. Scheu, M. Ruhle, and R. Raj: Acta Mater., 1998, vol. 46, pp. 759–72.

    Article  CAS  Google Scholar 

  43. A.H. Carim: Scripta Mater., 1991, vol. 25, pp. 51–54.

    Article  CAS  Google Scholar 

  44. M. Paulasto and J. Kivilahti: J. Mater. Res., 1998, vol. 13, pp. 343–52.

    CAS  Google Scholar 

  45. F. Barbier, C. Peytour, and A. Revcolevschi: J. Am. Ceram. Soc., 1990, vol. 73, pp. 1582–86.

    Article  CAS  Google Scholar 

  46. S. Suenaga, M. Nakahashi, M. Maruyama, and T. Fukasawa: J. Am. Ceram. Soc., 1997, vol. 80, pp. 439–44.

    Article  CAS  Google Scholar 

  47. W. Byun and H. Kim: Scripta Mater., 1994, vol. 31, pp. 1543–47.

    Article  CAS  Google Scholar 

  48. G.P. Kelkar and A.H. Carim: Mater. Lett., 1995, vol. 23, pp. 231–35.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiue, R.K., Wu, S.K., O, J.M. et al. Microstructural evolution at the bonding interface during the early-stage infrared active brazing of alumina. Metall Mater Trans A 31, 2527–2536 (2000). https://doi.org/10.1007/s11661-000-0197-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0197-9

Keywords

Navigation