Skip to main content
Log in

Microstructural effects on fracture toughness in AA7010 plate

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The influence of recrystallization and quench rate after solution treatment on the fracture toughness of 7010 aluminum plate has been studied in longitudinal-transverse (L-T) and short-longitudinal (S-L) orientations for T76-type heat treatments. Extensive fractographic analysis was carried out to identify the failure mechanisms, including simultaneous scanning electron microscope (SEM) observation of fracture surfaces and underlying microstructures. A slow quench rate was strongly detrimental because it modified the dominant failure mode from a relatively high energy primary void growth mechanism to lower energy transgranular shear and grain boundary ductile failure in the L-T and S-L orientations, respectively. Low energy failure was associated with coarse ν precipitation during the quench in both L-T and S-L orientation tests, with intragranular and intersubgranular particles contributing to L-T quench sensitivity, and intergranular particles contributing to S-L sensitivity. Partial recrystallization was generally detrimental, with recrystallized grains being shown to be a preferential crack path. The commonly supposed susceptibility of recrystallized grains to intergranular failure did not explain this behavior, particularly in fast quench materials, as recrystallized grains primarily failed by transgranular void growth from the large intermetallics with which they were intrinsically associated. Exceptional S-L orientation quench sensitivity was observed in unrecrystallized material and attributed to a synergistic interaction between heterogeneous boundary precipitation and the specific location of coarse intermetallics along grain boundaries in the unrecrystallized condition. Quantitative assessment of individual contributions to overall fracture resistance is discussed for cases where multiple failure mechanisms occur, highlighting the importance of interacting and noninteracting mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.S. Thompson: Metall. Trans. A, 1975, vol. 6A, pp. 671–83.

    CAS  Google Scholar 

  2. G.T. Hahn and A.R. Rosenfield: Metall. Trans. A, 1975, vol. 6A, pp. 653–68.

    CAS  Google Scholar 

  3. J.R. Rice and M.A. Johnson: Inelastic Behavior of Solids, McGraw-Hill, New York, NY, 1970, pp. 641–72.

    Google Scholar 

  4. G.T. Hahn and A.R. Rosenfield: ASTM STP 432, 1968, pp. 5–32.

  5. G.G. Garrett and J.F. Knott: Metall. Trans. A, 1978, vol. 9A, pp. 1187–1201.

    CAS  Google Scholar 

  6. D. Broek: Eng. Fract. Mech., 1973, vol. 5, pp. 55–66.

    Article  CAS  Google Scholar 

  7. C.Q. Chen and J.F. Knott: Met. Sci., 1981, vol. 15, pp. 357–64.

    Article  CAS  Google Scholar 

  8. A.K. Vasudevan and R.D. Doherty: Acta Metall., 1987, vol. 35, pp. 1193–219.

    Article  CAS  Google Scholar 

  9. M. Gräf and E. Hornbogen: Acta Metall., 1977, vol. 25, pp. 877–89.

    Article  Google Scholar 

  10. O.E. Alarcon, A.M. Nazan, and W.A. Monteiro: Mater. Sci. Eng., 1991, vol. 138, pp. 275–85.

    Article  Google Scholar 

  11. E. Di Russo: Metall. Sci. Technol., 1986, vol. 4, pp. 37–48.

    Google Scholar 

  12. R.C. Dorward and D.J. Beerntsen: Metall. Trans. A, 1995, vol. 26A, pp. 2481–84.

    CAS  Google Scholar 

  13. G.M. Ludtka and D.E. Laughlin: Metall. Trans. A, 1982, vol. 13A, pp. 411–25.

    CAS  Google Scholar 

  14. D.S. Thompson and R.E. Zinkham: Eng. Fract. Mech., 1975, vol. 7, pp. 389–409.

    Article  CAS  Google Scholar 

  15. S.V. Kamat and J.P. Hirth: Acta Mater., 1996, vol. 44, pp. 201–8.

    Article  CAS  Google Scholar 

  16. J.K. Park and A.J. Ardell: Metall. Trans. A, 1983, vol. 14A, pp. 1957–65.

    CAS  Google Scholar 

  17. D.S. Thompson, B.S. Subramanya, and S.A. Levy: Metall. Trans., 1971, vol. 2, pp. 1149–60.

    CAS  Google Scholar 

  18. W.M. Garrison, Jr. and N.R. Moody: J. Phys. Chem. Solids, 1987, vol. 48, pp. 1035–74.

    Article  CAS  Google Scholar 

  19. J.D. Embury and E. Nes: Z. Metallkd., 1974, vol. 65, pp. 45–57.

    CAS  Google Scholar 

  20. K. Welpman, A. Gysler, and G. Lutjering: Z. Metallkd., 1980, vol. 71, pp. 7–14.

    Google Scholar 

  21. J.F. Knott: Met. Sci., 1980, vol. 14, pp. 327–36.

    CAS  Google Scholar 

  22. J.T. Staley: Mater. Sci. Tech., 1987, vol. 3, pp. 923–35.

    CAS  Google Scholar 

  23. R.J. McElroy and Z.C. Szkopiak: Int. Met. Rev., 1972, vol. 17, pp. 175–89.

    CAS  Google Scholar 

  24. M. Sugamata, C.P. Blankenship, Jr., and E.A. Starke Jr.: Mater. Sci. Eng., 1993, vol. A163, pp. 1–10.

    CAS  Google Scholar 

  25. A. Deschamps and Y. Brechet: Mater. Sci. Eng., 1998, vol. A251, pp. 200–7.

    CAS  Google Scholar 

  26. J.-C. Ehrstrom: Pechiney CRV, Voreppe, France, private communication, 1997.

  27. T. Kirman: Metall. Trans., vol. 2, pp. 1761–70.

  28. I. Sinclair and P.J. Gregson: Mater. Sci. Forum, 1997, vol. 242, pp. 175–80.

    Article  CAS  Google Scholar 

  29. A.M. Gokhale, N.U. Deshpande, D.K. Denzer, and J. Liu: Metall. Mater. Trans. A, 1998, vol. 29, pp. 1203–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morere, B., Ehrström, J.C., Gregson, P.J. et al. Microstructural effects on fracture toughness in AA7010 plate. Metall Mater Trans A 31, 2503–2515 (2000). https://doi.org/10.1007/s11661-000-0195-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0195-y

Keywords

Navigation