Skip to main content
Log in

Strength and ductility of heavily drawn bundled Cu-Nb filamentary microcomposite wires with various Nb contents

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The strength and ductility of heavily drawn bundled Cu-Nb filamentary microcomposite was examined as a function of Nb content. In order to predict the variation of the yield strength (YS) with Nb content, the interfilamentary spacing was calculated as a function of Nb content based on the assumption that Nb filaments are distributed regularly along the sides of a triangular unit cell in the transverse section. The yield stress can be described as the sum of the substructure strengthening component due to elongated grains, subgrains and/or cells, the phase boundary strengthening term associated with the Hall-Petch type interaction between dislocations and phase boundaries, and the precipitate strengthening component. The contributions from phase boundary strengthening, σ PB (Cu-Nb), and precipitate strengthening, σ ppt, increase with increasing Nb content. However, the contribution from substructure strengthening, σ sub (Cu-Nb), decreases with increasing Nb content since more grain or subgrain boundaries are absorbed at Cu/Nb phase boundaries with increasing Nb content. The good agreement between the prediction and the experimental data suggests that the increase of the strength in Cu-Nb filamentary microcomposite with increasing Nb content results mostly from an increasing volume fraction of Nb filaments, which act as barriers to plastic flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.A. Spitzig: Scripta Metall., 1989, vol. 23, pp. 1085–90.

    Article  Google Scholar 

  2. W.A. Spitzig and P.D. Krotz: Acta Metall., 1988, vol. 36, pp. 1709–15.

    Article  CAS  Google Scholar 

  3. J.D. Verhoeven, L.S. Chumbley, F.C. Laabs, and W.A. Spitzig: Acta Metall. Mater., 1991, vol. 39, pp. 2825–34.

    Article  CAS  Google Scholar 

  4. P.D. Funkenbusch and T.H. Courtney: Scripta Metall., 1989, vol. 23, pp. 1719–24.

    Article  CAS  Google Scholar 

  5. T.H. Courtney: in Metal Matrix Composites: Processing and Interfaces, R.K. Everett and R.J. Arsenault, eds., Academic Press, San Diego, CA, 1991, p. 101.

    Google Scholar 

  6. C.L. Trybus and W.A. Spitzig: Acta Metall., 1989, vol. 37, pp. 1971–81.

    Article  CAS  Google Scholar 

  7. W.A. Spitzig, J.D. Verhoven, C.L. Trybus, and L.S. Chumbley: Scripta Metall. Mater., 1990, vol. 24, pp. 1181–82.

    Article  CAS  Google Scholar 

  8. W.A. Spitzig, C.L. Trybus, and J.D. Verhoeven: in Metal Matrix Composites: Mechanisms and Properties, R.K. Everett and R.J. Arsenault, eds., Academic Press, San Diego, CA, 1991, p. 151.

    Google Scholar 

  9. P.D. Funkenbusch and T.H. Courtney: Scripta Metall. Mater., 1990, vol. 24, pp. 1175–80.

    Article  CAS  Google Scholar 

  10. J. Bevk, J.P. Harbison, and J.L. Bell: J. Appl. Phys., 1978, vol. 49, pp. 6031–39.

    Article  CAS  Google Scholar 

  11. J.D. Verhoeven, H.L. Dowing, L.S. Chumbley, and E.D. Gibson: J. Appl. Phys., 1989, vol. 65, pp. 1293–1301.

    Article  CAS  Google Scholar 

  12. C. Biselli and D.G. Morris: Acta Metall. Mater., 1994, vol. 42, pp. 163–76.

    Article  CAS  Google Scholar 

  13. C. Biselli and D.G. Morris: Acta Metall. Mater., 1996, vol. 44 pp. 493–504.

    CAS  Google Scholar 

  14. U. Hangen and D. Raabe: Acta Metall. Mater., 1995, vol. 43, pp. 4075–82.

    Article  CAS  Google Scholar 

  15. S.I. Hong and M.A. Hill: Acta Metall. Mater., 1998, vol. 46, pp. 4111–22.

    CAS  Google Scholar 

  16. S.I. Hong and M.A. Hill: Mater. Sci. Eng. A, 2000, vol. 281, pp. 189–97.

    Article  Google Scholar 

  17. S.I. Hong: Scripta Mater., 1998, vol. 39, pp. 1685–91.

    Article  CAS  Google Scholar 

  18. W.A. Spitzig, F.C. Laabs, H.L. Downing, and C.V. Renaud: Mater. Manufacturing Processes, 1992, vol. 7, pp. 1–13.

    CAS  Google Scholar 

  19. W.A. Spitzig, H.L. Downing, F.C. Laabs, E.D. Gibson, and J.D. Verhoeven: Metall. Trans. A, 1993, vol. 24A, pp. 7–14.

    CAS  Google Scholar 

  20. L.S. Chumbley, H.L. Dowing, W.A. Spitzig, and J.D. Verhoeven: Mater. Sci. Eng., 1989, vol. A117, pp. 59–65.

    CAS  Google Scholar 

  21. A.R. Pelton, F.C. Laabs, W.A. Spitzig, and C.C. Cheng: Ultramicroscopy, 1987, vol. 22, pp. 251–66.

    Article  CAS  Google Scholar 

  22. C.L. Trybus, L.S. Chumbly, W.A. Spitzig, and J.D. Verhoeven: Ultramicroscopy, 1989, vol. 22, pp. 315–20.

    Article  Google Scholar 

  23. W.A. Spitzig, A.R. Pelton, and F.C. Laabs: Acta Metall., 1987, vol. 35, pp. 2427–42.

    Article  CAS  Google Scholar 

  24. S.I. Hong and M.A. Hill: Scripta Mater., 2000, vol. 42, pp. 737–42.

    Article  CAS  Google Scholar 

  25. S.I. Hong and M.A. Hill: “Mechanical and Nicrostructural Stability of Cu-Nb Microcomposites,” LANL Report No. LA-UR-0440, Los Alamos National Laboratory, Los Alamos, NM.

  26. P.D. Krotz, J.A. Fint, J.L. Yuen, and N.E. Paton: Mater. Sci. Eng., 1992, vol. A149, pp. 225–29.

    CAS  Google Scholar 

  27. A. Bengalem and D.G. Morris: Mater. Sci. Eng., 1993, vol. A161 pp. 255–66.

    Google Scholar 

  28. L.E. Murr: Interfacial Phenomena in Metals and Alloys, Addison-Wesley, London, 1975, p. 242.

    Google Scholar 

  29. T.W. Ellis, I.E. Anderson, H.L. Downing, and J.D. Verhoeven: Metall. Trans. A, 1993, vol. 24A, pp. 21–26.

    CAS  Google Scholar 

  30. J.B. Correia, H.A. Davies, and C.M. Sellars: Acta Mater., 1997, vol. 45, pp. 177–90.

    Article  CAS  Google Scholar 

  31. S.I. Hong, M.A. Hill, Y. Sakai, J.T. Wood, and J.D. Embury: Acta Metall. Mater., 1995, vol. 43, pp. 3313–23.

    Article  CAS  Google Scholar 

  32. C.V. Renaud, E. Gregory, and J. Wong: Adv. Cryo. Eng., 1996, vol. 23, pp. 443–49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, S.I., Kim, H.S. & Hill, M.A. Strength and ductility of heavily drawn bundled Cu-Nb filamentary microcomposite wires with various Nb contents. Metall Mater Trans A 31, 2457–2462 (2000). https://doi.org/10.1007/s11661-000-0191-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0191-2

Keywords

Navigation