Skip to main content

Advertisement

Log in

Bone mineral density T-scores comparison between obese and non-obese individuals included in a Fracture Liaison Service following a recent fragility fracture

  • Original Article
  • Published:
Archives of Osteoporosis Aims and scope Submit manuscript

Abstract

Mini-abstract

We used data from a Fracture Liaison Service to compare the mean T-scores of obese and non-obese patients after a recent fragility fracture. After adjusting for age, sex, and diabetes mellitus, T-score values were significantly higher at all measurement sites in obese patients, with a mean difference of 1 SD.

Purpose

This study aimed to compare the mean T-scores of obese and non-obese patients after recent fragility fractures.

Methods

Over a period of 5 and a half years, from January 2016 to May 2021, patients from a fracture liaison service were identified and their demographic characteristics, osteoporosis risk factors, BMD T-scores, and fracture sites were compared between obese (BMI ≥ 30 kg/m2) and non-obese (19 kg/m2 < BMI < 30 kg/m2) patients.

Results

A total of 712 patients were included (80.1% women; mean age 73.8 ± 11.3 years). Sixteen % had type 2 diabetes mellitus and 80% had a major osteoporotic fracture (MOF). 135 patients were obese and 577 non-obese, with obese patients younger (p < 0.001) and more frequently female (p = 0.03). Obese patients presented with fewer hip fractures (10% vs. 21%, p = 0.003) and more proximal humerus fractures (16% vs. 7%, p < 0.001) than non-obese patients. After adjusting for age, sex, and diabetes mellitus, BMD T-score values were significantly higher at all measurement sites (lumbar spine, total hip, and femoral neck) in obese patients than in non-obese patients for all types of fractures, with a mean difference of 1 standard deviation (p < 0.001 for all comparisons). The same results were observed in the population limited to MOF.

Conclusions

Given the crucial role of BMD T-score in determining the need for anti-osteoporotic medication following fragility fractures, it is reasonable to question the existing T-score thresholds in obese patients.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Blüher M (2019) Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol 15(5):288–298

    Article  PubMed  Google Scholar 

  2. Smith KB, Smith MS (2016) Obesity Statistics. Prim Care 43(1):121–135

    Article  PubMed  Google Scholar 

  3. Ng M, Fleming T, Robinson M et al (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384(9945):766–781

    Article  PubMed  PubMed Central  Google Scholar 

  4. Khan SS, Ning H, Wilkins JT et al (2018) Association of body mass index with lifetime risk of cardiovascular disease and compression of morbidity. JAMA Cardiol 3(4):280–287

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lauby-Secretan B, Scoccianti C, Loomis D et al (2016) International agency for research on cancer handbook working group. Body fatness and cancer. N Engl J Med 375(8):794–798

    Article  PubMed  PubMed Central  Google Scholar 

  6. Maggio CA, Pi-Sunyer FX (2003) Obesity and type 2 diabetes. Endocrinol Metab Clin North Am 32(4):805–822

    Article  PubMed  Google Scholar 

  7. Turcotte AF, O’Connor S, Morin SN et al (2021) Association between obesity and risk of fracture, bone mineral density and bone quality in adults: A systematic review and meta-analysis. PLoS ONE 16(6):e0252487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Evans AL, Paggiosi MA, Eastell R, Walsh JS (2015) Bone density, microstructure and strength in obese and normal weight men and women in younger and older adulthood. J Bone Miner Res 30(5):920–928

    Article  PubMed  Google Scholar 

  9. Sornay-Rendu E, Boutroy S, Vilayphiou N, Claustrat B, Chapurlat RD (2013) In obese postmenopausal women, bone microarchitecture and strength are not commensurate to greater body weight: the Os des Femmes de Lyon (OFELY) study. J Bone Miner Res 28(7):1679–1687

    Article  CAS  PubMed  Google Scholar 

  10. Cohen A, Dempster DW, Recker RR et al (2013) Abdominal fat is associated with lower bone formation and inferior bone quality in healthy premenopausal women: a transiliac bone biopsy study. J Clin Endocrinol Metab 98(6):2562–2572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Corbeil P, Simoneau M, Rancourt D, Tremblay A, Teasdale N (2001) Increased risk for falling associated with obesity: mathematical modeling of postural control. IEEE Trans Neural Syst Rehabil Eng 9(2):126–136

    Article  CAS  PubMed  Google Scholar 

  12. Prieto-Alhambra D, Premaor MO, Fina Avilés F et al (2012) The association between fracture and obesity is site-dependent: a population-based study in postmenopausal women. J Bone Miner Res 27(2):294–300

    Article  PubMed  Google Scholar 

  13. Compston JE, Watts NB, Chapurlat R et al (2011) Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med 124(11):1043–1050

    Article  PubMed  PubMed Central  Google Scholar 

  14. Johansson H, Kanis JA, Odén A et al (2014) A meta-analysis of the association of fracture risk and body mass index in women. J Bone Miner Res 29(1):223–233

    Article  PubMed  Google Scholar 

  15. Premaor MO, Compston JE, Fina Avilés F et al (2013) The association between fracture site and obesity in men: a population-based cohort study. J Bone Miner Res 28(8):1771–1777

    Article  PubMed  Google Scholar 

  16. Pflimlin A, Gournay A, Delabrière I et al (2019) Secondary prevention of osteoporotic fractures: evaluation of the Lille University Hospital’s Fracture Liaison Service between January 2016 and January 2018. Osteoporos Int 30:1779–1788

    Article  CAS  PubMed  Google Scholar 

  17. Delbar A, Pflimlin A, Delabrière I et al (2021) Persistence with osteoporosis treatment in patients from the Lille University Hospital Fracture Liaison Service. Bone 144:115838

    Article  CAS  PubMed  Google Scholar 

  18. Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E (2008) FRAX™ and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19(4):385–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Briot K, Roux C, Thomas T et al (2018) 2018 update of French recommendations on the management of postmenopausal osteoporosis. Joint Bone Spine 85(5):519–530

    Article  PubMed  Google Scholar 

  20. Bouvard B, Briot K, Legrand E et al (2021) Recommandations françaises de la prise en charge et du traitement de l’ostéoporose masculine. Rev Rhum 88:173–182

    Article  Google Scholar 

  21. Levasseur R, Guaydier-Souquières G, Marcelli C, Sabatier JP (2003) The absorptiometry T-score: influence of selection of the reference population and related considerations for everyday practice. Joint Bone Spine 70:290–293

    Article  PubMed  Google Scholar 

  22. Looker AC, Johnston CC Jr, Wahner HW et al (1995) Prevalence of Low femoral bone density in older U.S. Adults from NHANES III. J Bone Miner Res 10:796–802

    Article  CAS  PubMed  Google Scholar 

  23. Looker AC, Wahner HW, Dunn WL et al (1998) Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int 8:468–489

    Article  CAS  PubMed  Google Scholar 

  24. Couris CM, Chapurlat RD, Kanis JA et al (2012) FRAX® probabilities and risk of major osteoporotic fracture in France. Osteoporos Int 23(9):2321–2327

    Article  CAS  PubMed  Google Scholar 

  25. Vranken L, Wyers CE, van den Bergh JPW, Geusens PPMM (2017) The Phenotype of Patients with a Recent Fracture: A Literature Survey of the Fracture Liaison Service. Calcif Tissue Int 101(3):248–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Luo J, Lee RY (2020) How does obesity influence the risk of vertebral fracture? Findings from the UK biobank participants. JBMR Plus 4:e10358

    Article  PubMed  PubMed Central  Google Scholar 

  27. Preamor MO, Ensrud K, Lui L et al (2011) Risk factors for nonvertebral fracture in obese older women. J Clin Endocrinol Metab 96:2414–2421

    Article  Google Scholar 

  28. Charles A, Mugisha A, Iconaru L et al (2022) Distribution of fracture sites in postmenopausal overweight and obese women: The FRISBEE study. Calcif Tissue Int 111(1):29–34

    Article  CAS  PubMed  Google Scholar 

  29. Cohen A, Dempster DW, Recker RR et al (2013) Abdominal fat is associated with lower bone formation and inferior bone quality in healthy premenopausal women: a transiliac bone biopsy study. J Clin Endocrinol Metab 98:2562–2572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Compston J (2013) Obesity and fractures. Joint Bone Spine 80(1):8–10

    Article  PubMed  Google Scholar 

  31. Vincent HK, Vincent KR, Lamb KM (2010) Obesity and mobility disability in the older adult. Obes Rev 11:568–579

    Article  CAS  PubMed  Google Scholar 

  32. Yang Y, Komisar V, Shishov N et al (2020) The effect of fall biomechanics on risk for hip fracture in older adults: a cohort study of video-captured falls in long-term care. J Bone Miner Res 35:1914–1922

    Article  CAS  PubMed  Google Scholar 

  33. Neri SGR, Harvey LA, Tiedemann A et al (2020) Obesity and falls in older women: mediating effects of muscle quality, foot loads and postural control. Gait Posture 77:138–143

    Article  PubMed  Google Scholar 

  34. Donini LM, Busetto L, Bischoff SC, Cederholm T et al (2022) Definition and diagnostic criteria for sarcopenic obesity: ESPEN and EASO consensus statement. Obes Facts 15(3):321–335

    Article  PubMed  PubMed Central  Google Scholar 

  35. Schwartz AV (2015) Marrow fat and bone: review of clinical findings. Front Endocrinol 6:40

    Article  CAS  Google Scholar 

  36. Paccou J, Penel G, Chauveau C, Cortet B, Hardouin P (2019) Marrow adiposity and bone: Review of clinical implications. Bone 118:8–15

    Article  PubMed  Google Scholar 

  37. Bredella MA, Torriani M, Ghomi RH et al (2011) Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women. Obesity (Silver Spring) 19:49–53

    Article  CAS  PubMed  Google Scholar 

  38. Singhal V, Bose A, Liang Y et al (2019) Marrow adipose tissue in adolescent girls with obesity. Bone 129:115103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li G, Compston JE, Leslie WD et al (2020) Relationship between obesity and risk of major osteoporotic fracture in postmenopausal women: taking frailty into consideration. J Bone Miner Res 35:2355–2362

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Paccou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchasson, G., Philippoteaux, C., Legroux-Gérot, I. et al. Bone mineral density T-scores comparison between obese and non-obese individuals included in a Fracture Liaison Service following a recent fragility fracture. Arch Osteoporos 19, 20 (2024). https://doi.org/10.1007/s11657-024-01379-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11657-024-01379-2

Keywords

Navigation