Abstract
Summary
In a large population-based study of Iran, the age-standardized prevalence of osteoporosis was 24.6% in men and 62.7% in women aged ≥ 60 years. Osteoporosis was negatively associated with body mass index in both sexes, and with diabetes in men and hypertriglyceridemia in women.
Purpose
Population aging has made osteoporosis and osteoporotic fractures an important health problem, especially in developing countries. This study aimed to explore the prevalence of osteoporosis and associated factors among the elderly population of the south-west of Iran.
Methods
Baseline data of the second stage of the Bushehr Elderly Health program was used. Spinal, total hip, or femoral neck osteoporosis was described as a BMD that lies 2.5 standard deviations or more, below the average values of a young healthy adult in the lumbar spine, total hip, or femoral neck, respectively. Osteoporosis at either site was defined as total osteoporosis. Age-standardized prevalence of osteoporosis was estimated. We used the modified Poisson regression with a robust variance estimator to identify the factors related to osteoporosis, adjusting for potential confounders.
Results
Overall, 2425 individuals (1166 men) aged over 60 years were included. In all, total osteoporosis was detected in 1006 (41.5%) of the participants. Using the reference value derived from Caucasian women aged 20–29 years, the age-standardized prevalence of total osteoporosis was 24.6 (95% CI: 21.9–27.3) in men, and 62.7 (95% CI: 60.0–65.4) in women. In men, osteoporosis was positively associated with age, smoking, history of fracture, and history of renal/liver diseases and negatively associated with body mass index (BMI) and diabetes. BMI, hypertriglyceridemia, and education were negatively correlated with osteoporosis in women, while years after menopause and history of fracture increased the likelihood of osteoporosis, significantly.
Conclusion
Results support the high prevalence of osteoporosis and osteopenia in the elderly population. Considering the importance of severe complications, especially fractures, comprehensive interventions should be expanded.
This is a preview of subscription content, access via your institution.

References
Leslie WD, Morin SN (2014) Osteoporosis epidemiology 2013: implications for diagnosis, risk assessment, and treatment. Curr Opin Rheumatol 26(4):440–446
Cooper C, Campion G (1992) and L.r. Melton, Hip fractures in the elderly: a world-wide projection. Osteoporos Int 2(6):285–289
Cosman F, de Beur SJ, LeBoff M, Lewiecki EM, Tanner B, Randall S, Lindsay R, National Osteoporosis Foundation (2014) Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 25(10):2359–2381
https://www.iofbonehealth.org/sites/default/files/media/PDFs/Fact%20Sheets/2014-factsheet-osteoporosis-A4.pdf., T.G.B.o.O.A.F.A.f.
Handa R, Kalla AA, Maalouf G (2008) Osteoporosis in developing countries. Best Pract Res Clin Rheumatol 22(4):693–708
Compston J et al (2017) UK clinical guideline for the prevention and treatment of osteoporosis. Arch Osteoporos 12(1):43
Oden A et al (2015) Burden of high fracture probability worldwide: secular increases 2010–2040. Osteoporos Int 26(9):2243–2248
Lane NE (2006) Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol 194(2):S3–S11
El-Hajj Fuleihan G, Adib G, Nauroy L (2011) The middle east & Africa regional audit, epidemiology, costs & burden of osteoporosis in 2011. Int Osteoporos Found 102011–105000
Pourhashem Z et al (2012) Prevalence of osteoporosis and its association with serum vitamin D level in older people in Amirkola, North of Iran. Caspian J Intern Med 3(1):347
Doosti-Irani A, Ghafari M, Cheraghi Z (2018) The high prevalence of osteoporosis as a preventable disease: the need for greater attention to prevention programs in Iran. Iran J Public Health 47(8):1220–1221
Jordan K, Cooper C (2002) Epidemiology of osteoporosis. Best practice & research. Clin Rheumatol 16(5):795–806
Rahnavard Z et al (2009) The incidence of osteoporotic hip fracture: Iranian Multicenter osteoporosis study (IMOS). Res J Biol Sci 4(2):171–173
Ostovar A, Nabipour I, Larijani B, Heshmat R, Darabi H, Vahdat K, Ravanipour M, Mehrdad N, Raeisi A, Heidari G, Shafiee G, Haeri M, Pourbehi M, Sharifi F, Noroozi A, Tahmasebi R, Aghaei Meybodi H, Assadi M, Farrokhi S, Nemati R, Amini MR, Barekat M, Amini A, Salimipour H, Dobaradaran S, Moshtaghi D (2015) Bushehr elderly health (BEH) Programme, phase I (cardiovascular system). BMJ Open 5(12):e009597
Shafiee G, Ostovar A, Heshmat R, Darabi H, Sharifi F, Raeisi A, Mehrdad N, Shadman Z, Razi F, Amini MR, Arzaghi SM, Meybodi HA, Soltani A, Nabipour I, Larijani B (2017) Bushehr Elderly Health (BEH) programme: study protocol and design of musculoskeletal system and cognitive function (stage II). BMJ Open 7(8):e013606
Kanis JA et al (2013) Standardising the descriptive epidemiology of osteoporosis: recommendations from the Epidemiology and Quality of Life Working Group of IOF. Osteoporos Int 24(11):2763–2764
Brooks GA, Butte NF, Rand WM, Flatt JP, Caballero B (2004) Chronicle of the Institute of Medicine physical activity recommendation: how a physical activity recommendation came to be among dietary recommendations. Am J Clin Nutr 79(5):921S–930S
Mahan LK, Raymond JL (2016) Krause’s food & the nutrition care process-e-book. Elsevier Health Sci
Census (2016) Available from: https://irandataportal.syr.edu/census/census-2016
Zou G (2004) A modified poisson regression approach to prospective studies with binary data. Am J Epidemiol 159(7):702–706
Wade S et al (2014) Estimating prevalence of osteoporosis: examples from industrialized countries. Arch Osteoporos 9(1):182
Gheita TA, Hammam N (2018) Epidemiology and awareness of osteoporosis: a viewpoint from the Middle East and North Africa. Int J Clin Rheumatol 134
Vijayakumar R, Büsselberg D (2016) Osteoporosis: an under-recognized public health problem: local and global risk factors and its regional and worldwide prevalence. J Local Global Health Sci 2
Ho SC, Chen Y-m, Woo JL (2005) Educational level and osteoporosis risk in postmenopausal Chinese women. Am J Epidemiol 161(7):680–690
Keramat A, Patwardhan B, Larijani B, Chopra A, Mithal A, Chakravarty D, Adibi H, Khosravi A (2008) The assessment of osteoporosis risk factors in Iranian women compared with Indian women. BMC Musculoskelet Disord 9(1):28
Reid IR (2002) Relationships among body mass, its components, and bone. Bone 31(5):547–555
Mishra AK, Gajjar K, Patel K (2016) Association between body mass index and bone mineral density among healthy women in India. Int J Med Res Health Sci 5(4):156–160
Saito M, Kida Y, Kato S, Marumo K (2014) Diabetes, collagen, and bone quality. Curr Osteoporos Rep 12(2):181–188
Tell-Lebanon O, Rotman-Pikielny P (2016) Osteoporosis and diabetes - in which way are they related? Harefuah 155(11):697–701
Ho-Pham LT, Chau PMN, Do AT, Nguyen HC, Nguyen TV (2018) Type 2 diabetes is associated with higher trabecular bone density but lower cortical bone density: the Vietnam Osteoporosis Study. Osteoporos Int 29(9):2059–2067
Ward KD, Klesges RC (2001) A meta-analysis of the effects of cigarette smoking on bone mineral density. Calcif Tissue Int 68(5):259–270
Demir B, Haberal A, Geyik P, Baskan B, Ozturkoglu E, Karacay O, Deveci S (2008) Identification of the risk factors for osteoporosis among postmenopausal women. Maturitas 60(3-4):253–256
Peker N, Tosun ÖÇ (2018) Is grand multiparity a risk factor for the development of postmenopausal osteoporosis? Clin Interv Aging 13:505–508
Turan V (2011) Grand-grand multiparity (more than 10 deliveries) does not convey a risk for osteoporosis. Acta Obstet Gynecol Scand 90(12):1440–1442
Allali F, Maaroufi H, Aichaoui SE, Khazani H, Saoud B, Benyahya B, Abouqal R, Hajjaj-Hassouni N (2007) Influence of parity on bone mineral density and peripheral fracture risk in Moroccan postmenopausal women. Maturitas 57(4):392–398
Wong SK et al (2016) The relationship between metabolic syndrome and osteoporosis: a review. Nutrients 8(6)
Adami S, Braga V, Zamboni M, Gatti D, Rossini M, Bakri J, Battaglia E (2004) Relationship between lipids and bone mass in 2 cohorts of healthy women and men. Calcif Tissue Int 74(2):136–142
Panahi N, Soltani A, Ghasem-Zadeh A, Shafiee G, Heshmat R, Razi F, Mehrdad N, Nabipour I, Larijani B, Ostovar A (2019) Associations between the lipid profile and the lumbar spine bone mineral density and trabecular bone score in elderly Iranian individuals participating in the Bushehr Elderly Health Program: a population-based study. Arch Osteoporos 14(1):52
Yamaguchi T, Sugimoto T, Yano S, Yamauchi M, Sowa H, Chen Q, Chihara K (2002) Plasma lipids and osteoporosis in postmenopausal women. Endocr J 49(2):211–217
Chen YY, Wang WW, Yang L, Chen WW, Zhang HX (2018) Association between lipid profiles and osteoporosis in postmenopausal women: a meta-analysis. Eur Rev Med Pharmacol Sci 22(1):1–9
Anaforoglu I, Nar-Demirer A, Bascil-Tutuncu N, Ertorer ME (2009) Prevalence of osteoporosis and factors affecting bone mineral density among postmenopausal Turkish women with type 2 diabetes. J Diabetes Complicat 23(1):12–17
Costantini S, Conte C (2019) Bone health in diabetes and prediabetes. World J Diabetes 10(8):421–445
Sassi F et al (2018) Type 2 diabetes affects bone cells precursors and bone turnover. BMC Endocr Disord 18(1):1–8
Hu Z, Ma C, Liang Y, Zou S, Liu X (2019) Osteoclasts in bone regeneration under type 2 diabetes mellitus. Acta Biomater 84:402–413
Ebrahimpur M, Sharifi F, Nezhad FA, Bagherzadeh M, Ostovar A, Shafiee G, Heshmat R, Mehrdad N, Razi F, Khashayar P, Nabipour I, Larijani B (2019) Effect of diabetes on BMD and TBS values as determinants of bone health in the elderly: Bushehr Elderly Health program. J Diab Metab Disord 18(1):99–106
Yang S, Nguyen ND, Center JR, Eisman JA, Nguyen TV (2014) Association between hypertension and fragility fracture: a longitudinal study. Osteoporos Int 25(1):97–103
Zhang J, Zhang K, Shi H, Tang Z (2015) A cross-sectional study to evaluate the associations between hypertension and osteoporosis in Chinese postmenopausal women. Int J Clin Exp Med 8(11):21194–21200
Silva TR, Franz R, Maturana MA, Spritzer PM (2015) Associations between body composition and lifestyle factors with bone mineral density according to time since menopause in women from Southern Brazil: a cross-sectional study. BMC Endocr Disord 15:71
Oura P, Paananen M, Niinimäki J, Tammelin T, Auvinen J, Korpelainen R, Karppinen J, Junno JA (2017) High-impact exercise in adulthood and vertebral dimensions in midlife - the Northern Finland Birth Cohort 1966 study. BMC Musculoskelet Disord 18(1):433
Dallanezi G, Freire B, Nahás E, Nahás-Neto J, Corrente J, Mazeto G (2016) Physical activity level of post-menopausal women with low bone mineral density. Rev Bras Ginecol Obstet 38(5):225–230
Buckley L, Guyatt G, Fink HA, Cannon M, Grossman J, Hansen KE, Humphrey MB, Lane NE, Magrey M, Miller M, Morrison L, Rao M, Byun Robinson A, Saha S, Wolver S, Bannuru RR, Vaysbrot E, Osani M, Turgunbaev M, Miller AS, McAlindon T (2017) 2017 American College of Rheumatology Guideline for the Prevention and Treatment of Glucocorticoid-Induced Osteoporosis. Arthritis Care Res 69(8):1095–1110
Rizzoli R, Biver E (2015) Glucocorticoid-induced osteoporosis: who to treat with what agent? Nat Rev Rheumatol 11(2):98–109
Ma CC, Xu SQ, Gong X, Wu Y, Qi S, Liu W, Xu JH (2017) Prevalence and risk factors associated with glucocorticoid-induced osteoporosis in Chinese patients with rheumatoid arthritis. Arch Osteoporos 12(1):33
Baranova IA, Ershova OB, Anaev EK, Anokhina TN, Anoshenkova ОN, Batyn SZ, Belyaeva EA, Bolshakova TY, Volkorezov IA, Eliseeva LN, Kashnazarova EV, Kinyaikin MF, Kirpikova MN, Klyuchnikova EP, Korolev MA, Kuneevskaya IV, Masneva LV, Muradyants AA, Otteva EN, Petrachkova TN, Peshekhonova LK, Povzun AS, Raskina TA, Smirnova ML, Toroptsova NV, Khasanova RB, Shamsutdinova NG, Shaporova NL, Shitova NS, Shkireeva SY, Shostak NA, Lesnyak OM (2015) Analysis of the state-of-the-art of consulting medical care to patients with glucocorticoid-induced osteoporosis or its risk according to the data of a questionnaire survey (GLUCOST study). Ter Arkh 87(5):58–64
Tabrizi R, Moosazadeh M, Akbari M, Dabbaghmanesh MH, Mohamadkhani M, Asemi Z, Heydari ST, Akbari M, Lankarani KB (2018) High prevalence of vitamin D deficiency among Iranian population: a systematic review and meta-analysis. Iran J Med Sci 43(2):125–139
Heshmat R et al (2008) Vitamin D deficiency in Iran: a multi-center study among different urban areas. Iran J Public Health 37(1):72–78
Acknowledgments
The authors would like to express their gratefulness to the staff and researchers of the Bushehr Elderly Health program for their thoughtful contribution.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of interest
None.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Fahimfar, N., Noorali, S., Yousefi, S. et al. Prevalence of osteoporosis among the elderly population of Iran. Arch Osteoporos 16, 16 (2021). https://doi.org/10.1007/s11657-020-00872-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11657-020-00872-8