Skip to main content

The effect of hyperglycaemia on osseointegration: a review of animal models of diabetes mellitus and titanium implant placement

Abstract

Summary

Patients with type 2 diabetes mellitus have a higher risk of dental and/or orthopaedic implant failure. However, the mechanism behind this phenomenon is unclear, and animal studies may prove useful in shedding light on the processes involved. This review considers the available literature on rat models of diabetes and titanium implantation.

Introduction

The process of osseointegration whereby direct contact is achieved between bone and an implant surface depends on healthy bone metabolism. Collective evidence suggests that hyperglycaemia adversely affects bone turnover and the quality of the organic matrix resulting in an overall deterioration in the quality, resilience and structure of the bone tissue. This in turn results in compromised osseointegration in patients receiving dental and orthopaedic implants. The incidence of diabetes mellitus (DM), which is a chronic metabolic disorder resulting in hyperglycaemia, is rising. Of particular significance is the rising incidence of adult onset type 2 diabetes mellitus (T2DM) in an ageing population. Understanding the effects of hyperglycaemia on osseointegration will enable clinicians to manage health outcomes for patients receiving implants. Much of our understanding of how hyperglycaemia affects osseointegration comes from animal studies.

Methods

In this review, we critically analyse the current animal studies.

Results

Our review has found that most studies used a type 1 diabetes mellitus (T1DM) rodent model and looked at a young male population of rodents. The pathophysiology of T1DM is however very different to that of T2DM and is not representative of T2DM, the incidence of which is rising in the ageing adult population. Genetically modified rats have been used to model T2DM, but none of these studies have included female rats and the metabolic changes in bone for some of these models used are not adequately characterized.

Conclusions

Therefore, the review suggests that the study population needs to be broadened to include both T1DM and T2DM models, older rats as well as young rats, and importantly animals from both sexes to reflect more accurately clinical practice.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Association AD (2013) Diagnosis and classification of diabetes mellitus. Diabetes Care 36(Supplement 1):S67–S74

    Article  Google Scholar 

  2. 2.

    International Diabetes Federation. IDF Diabetes, 7th ed. Brussels, Belgium: International Diabetes Federation, 2015.www.diabetesatlas.org.

  3. 3.

    Branemark PI, Adell R, Breine U, Hansson BO, Lindstrom J, Ohlsson A (1969) Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg 3(2):81–100

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Marx RE, Garg AK (1998) Bone structure, metabolism, and physiology: its impact on dental implantology. Implant Dent 7(4):267–276

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Bryant SR, Zarb GA (1998) Osseointegration of oral implants in older and younger adults. Int J Oral Maxillofac Implants 13(4):492–499

    CAS  PubMed  Google Scholar 

  6. 6.

    Chrcanovic B, Albrektsson T, Wennerberg A (2014) Diabetes and oral implant failure a systematic review. J Dent Res 93(9):859–867

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    King AJF (2012) The use of animal models in diabetes research. Br J Pharmacol 166(3):877–894

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Bell RH, Hye RJ (1983) Animal models of diabetes mellitus: physiology and pathology. J Surg Res 35(5):433–460

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Srinivasan K, Ramarao P (2007) Animal models in type 2 diabetes research: an overview. Indian J Med Res 125(3):451

    CAS  PubMed  Google Scholar 

  10. 10.

    Kanazawa I, Yamaguchi T, Yamamoto M, Yamauchi M, Kurioka S, Yano S, et al. (2009) Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J Clin Endocrinol Metab 94(1):45–49

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Krakauer JC, McKenna MJ, Buderer NF, Rao DS, Whitehouse FW, Parfitt AM (1995) Bone loss and bone turnover in diabetes. Diabetes 44(7):775–782

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Pedrazzoni M, Ciotti G, Pioli G, Girasole G, Davoli L, Palummeri E, et al. (1989) Osteocalcin levels in diabetic subjects. Calcif Tissue Int 45(6):331–336

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Shu A, Yin M, Stein E, Cremers S, Dworakowski E, Ives R, et al. (2012) Bone structure and turnover in type 2 diabetes mellitus. Osteoporos Int 23(2):635–641

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Achemlal L, Tellal S, Rkiouak F (2005) Bone metabolism in male patients with type 2 diabetes. Clin Rheumatol 24:493–496

    Article  PubMed  Google Scholar 

  15. 15.

    Knudsen ST, Foss CH, Poulsen PL, Andersen NH, Mogensen CE, Rasmussen LM (2003) Increased plasma concentrations of osteoprotegerin in type 2 diabetic patients with microvascular complications. European journal of endocrinology / European Federation of Endocrine Societies 149(1):39–42

    CAS  Article  Google Scholar 

  16. 16.

    Vashishth D (2007) The role of the collagen matrix in skeletal fragility. Current osteoporosis reports 5(2):62–66

    Article  PubMed  Google Scholar 

  17. 17.

    Garnero P, Borel O, Gineyts E, Duboeuf F, Solberg H, Bouxsein ML, et al. (2006) Extracellular post-translational modifications of collagen are major determinants of biomechanical properties of fetal bovine cortical bone. Bone 38(3):300–309

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Kume S, Kato S (2005) Yamagishi Si, Inagaki Y, Ueda S, Arima N, et al. Advanced glycation end-products attenuate human mesenchymal stem cells and prevent cognate differentiation into adipose tissue, cartilage, and bone. J Bone Miner Res 20(9):1647–1658

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Miyata T, Notoya K, Yoshida K, Horie K, Maeda K, Kurokawa K, et al. (1997) Advanced glycation end products enhance osteoclast-induced bone resorption in cultured mouse unfractionated bone cells and in rats implanted subcutaneously with devitalized bone particles. J Am Soc Nephrol 8(2):260–270

    CAS  PubMed  Google Scholar 

  20. 20.

    Levinger I, Seeman E, Jerums G, McConell GK, Rybchyn MS, Cassar S, et al. (2016) Glucose-loading reduces bone remodeling in women and osteoblast function in vitro. Physiological reports 4(3):e12700

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Burghardt AJ, Issever AS, Schwartz AV, Davis KA, Masharani U, Majumdar S, et al. (2010) High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. The Journal of Clinical Endocrinology & Metabolism 95(11):5045–5055

    CAS  Article  Google Scholar 

  22. 22.

    Hasegawa H, Ozawa S, Hashimoto K, Takeichi T, Ogawa T (2008) Type 2 diabetes impairs implant osseointegration capacity in rats. Int J Oral Maxillofac Implants 23:237–246

    PubMed  Google Scholar 

  23. 23.

    Berglundh T, Abrahamsson I, Lang NP, Lindhe J (2003) De novo alveolar bone formation adjacent to endosseous implants. Clin Oral Implants Res 14(3):251–262

    Article  PubMed  Google Scholar 

  24. 24.

    Guo S, DiPietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219–229.

  25. 25.

    Nevins ML, Karimbux NY, Weber HP, Giannobile WV, Fiorellini JP (1998) Wound healing around endosseous implants in experimental diabetes. Int J Oral Maxillofac Implants 13(5):620–629

    CAS  PubMed  Google Scholar 

  26. 26.

    McCracken MS, Aponte-Wesson R, Chavali R, Lemons JE (2006) Bone associated with implants in diabetic and insulin-treated rats. Clin Oral Implants Res 17(5):495–500

    Article  PubMed  Google Scholar 

  27. 27.

    Kwon PT, Rahman SS, Kim DM, Kopman JA, Karimbux NY, Fiorellini JP (2005) Maintenance of osseointegration utilizing insulin therapy in a diabetic rat model. J Periodontol 76(4):621–626

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Siqueira JT, Cavalher-Machado SC, Arana-Chavez VE, Sannomiya P (2003) Bone formation around titanium implants in the rat tibia: role of insulin. Implant Dent 12(3):242–251

    Article  PubMed  Google Scholar 

  29. 29.

    Yamamoto K, Yamamoto S, Iizuka T, Obata T, Imai Y, Yanagawa A, et al. (2006) Effect of duration of hyperglycemia on osseointegration around titanium implants. Journal of Oral Biosciences 48(1):62–73

    Article  Google Scholar 

  30. 30.

    Kuchler U, Spilka T, Baron K, Tangl S, Watzek G, Gruber R (2011) Intermittent parathyroid hormone fails to stimulate osseointegration in diabetic rats. Clin Oral Implants Res 22(5):518–523

    Article  PubMed  Google Scholar 

  31. 31.

    Molon RS, Morais-Camilo JAND, Verzola MHA, Faeda RS, Pepato MT, Marcantonio E (2013) Impact of diabetes mellitus and metabolic control on bone healing around osseointegrated implants: removal torque and histomorphometric analysis in rats. Clin Oral Implants Res 24(7):831–837

    Article  PubMed  Google Scholar 

  32. 32.

    Retzepi M, Lewis MP, Donos N (2010) Effect of diabetes and metabolic control on de novo bone formation following guided bone regeneration. Clin Oral Implants Res 21(1):71–79

    Article  PubMed  Google Scholar 

  33. 33.

    Margonar RDDSMS, Sakakura CEDDSMS, Holzhausen MDDSMS, Pepato MTP, Candia Alba RJDDS, Marcantonio EJDDSMSP (2003) The influence of diabetes mellitus and insulin therapy on biomechanical retention around dental implants: a study in rabbits. Implant Dent 12(4):333–339

    Article  PubMed  Google Scholar 

  34. 34.

    Donos N, Dereka X, Mardas N (2015) Experimental models for guided bone regeneration in healthy and medically compromised conditions. Periodontol 68(1):99–121

    Article  Google Scholar 

  35. 35.

    Hough S, Avioli LV, Bergfeld MA, Fallon MD, Slatopolsky E, Teitelbaum SL (1981) Correction of abnormal bone and mineral metabolism in chronic streptozotocin-induced diabetes mellitus in the rat by insulin therapy. Endocrinology 108(6):2228–2234

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Nevins ML, Karimbux NY (1998) Wound healing around endosseous implants in experimental diabetes. Int J Oral Maxillofac Implants 13(5):620–629

    CAS  PubMed  Google Scholar 

  37. 37.

    Ajami E, Mahno E, Mendes V, Bell S, Moineddin R, Davies J (2014) Bone healing and the effect of implant surface topography on osteoconduction in hyperglycemia. Acta Biomater 10(1):394–405

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    de Morais JA, Trindade-Suedam IK, Pepato MT, Marcantonio E Jr, Wenzel A, Scaf G (2009) Effect of diabetes mellitus and insulin therapy on bone density around osseointegrated dental implants: a digital subtraction radiography study in rats. Clin Oral Implants Res 20(8):796–801

  39. 39.

    Kotsovilis S, Karoussis IK, Fourmousis I (2006) A comprehensive and critical review of dental implant placement in diabetic animals and patients. Clin Oral Implants Res 17(5):587–599

    Article  PubMed  Google Scholar 

  40. 40.

    Glösel B, Kuchler U, Watzek G, Gruber R (2010) Review of dental implant rat research models simulating osteoporosis or diabetes. International Journal of Oral & Maxillofacial Implants 25(3):516–524

    Google Scholar 

  41. 41.

    Casap N, Nimri S, Ziv E, Sela J, Samuni Y (2008) Type 2 diabetes has minimal effect on osseointegration of titanium implants in Psammomys obesus. Clin Oral Implants Res 19(5):458–464

    Article  PubMed  Google Scholar 

  42. 42.

    Wang F, Song Y-L, Li D-H, Li C-x, Wang Y, Zhang N, et al. (2010) Type 2 diabetes mellitus impairs bone healing of dental implants in GK rats. Diabetes Res Clin Pract 88(1):e7–e9

    Article  PubMed  Google Scholar 

  43. 43.

    Wang F, Song YL, Li CX, Li DH, Zhang HP, Ma AJ, et al. (2010) Sustained release of insulin-like growth factor-1 from poly(lactide-co-glycolide) microspheres improves osseointegration of dental implants in type 2 diabetic rats. Eur J Pharmacol 640(1–3):226–232

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Wang B, Song Y, Wang F, Li D, Zhang H, Ma A, et al. (2011) Effects of local infiltration of insulin around titanium implants in diabetic rats. Br J Oral Maxillofac Surg 49(3):225–229

    Article  PubMed  Google Scholar 

  45. 45.

    Yu M, Zhou W, Song Y, Yu F, Li D, Na S, et al. (2011) Development of mesenchymal stem cell-implant complexes by cultured cells sheet enhances osseointegration in type 2 diabetic rat model. Bone 49(3):387–394

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Zou GK, Song YL, Zhou W, Yu M, Liang LH, Sun DC, et al. (2012) Effects of local delivery of bFGF from PLGA microspheres on osseointegration around implants in diabetic rats. Oral surgery, oral medicine, oral pathology and oral radiology 114(3):284–289

    Article  PubMed  Google Scholar 

  47. 47.

    Sugita Y, Honda Y, Kato I, Kubo K, Maeda H, Ogawa T (2014) Role of photofunctionalization in mitigating impaired osseointegration associated with type 2 diabetes in rats. Int J Oral Maxillofac Implants 29(6):1293–1300

    PubMed  Google Scholar 

  48. 48.

    Liu Z, Zhou W, Tangl S, Liu S, Xu X, Rausch-Fan X (2015) Potential mechanism for osseointegration of dental implants in Zucker diabetic fatty rats. Br J Oral Maxillofac Surg 53(8):748–753

    Article  PubMed  Google Scholar 

  49. 49.

    Zhou W, Liu Z, Yao J, Chi F, Dong K, Yue X, et al. (2015) The effects of exenatide microsphere on serum BGP and ALP levels in ZDF rats after implantation. Clin Implant Dent Relat Res 17(4):765–770

    Article  PubMed  Google Scholar 

  50. 50.

    Hashiguchi C, Kawamoto S, Kasai T, Nishi Y, Nagaoka E (2014) Influence of an antidiabetic drug on biomechanical and histological parameters around implants in type 2 diabetic rats. Implant Dent 23(3):264–269

    Article  PubMed  Google Scholar 

  51. 51.

    Rees DA, Alcolado JC (2005) Animal models of diabetes mellitus. Diabetic medicine: a journal of the British Diabetic Association 22(4):359–370

    CAS  Article  Google Scholar 

  52. 52.

    Hughes P, Tanner J (1970) The assessment of skeletal maturity in the growing rat. J Anat 106(Pt 2):371

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Kawano K, Hirashima T, Mori S, Natori T (1994) OLETF (Otsuka Long-Evans Tokushima Fatty) rat: a new NIDDM rat strain. Diabetes Res Clin Pract 24(Suppl):S317–S320

    Article  PubMed  Google Scholar 

  54. 54.

    Fukaya N, Mochizuki K, Shimada M, Goda T (2009) The α-glucosidase inhibitor miglitol decreases glucose fluctuations and gene expression of inflammatory cytokines induced by hyperglycemia in peripheral leukocytes. Nutrition 25(6):657–667

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Yang SJ, Choi JM, Kim L, Park SE, Rhee EJ, Lee WY, et al. (2014) Nicotinamide improves glucose metabolism and affects the hepatic NAD-sirtuin pathway in a rodent model of obesity and type 2 diabetes. J Nutr Biochem 25(1):66–72

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Kim JY, Lee SK, Jo KJ, Song DY, Lim DM, Park KY, et al. (2013) Exendin-4 increases bone mineral density in type 2 diabetic OLETF rats potentially through the down-regulation of SOST/sclerostin in osteocytes. Life Sci 92(10):533–540

    Article  PubMed  Google Scholar 

  57. 57.

    Phillips MS, Liu Q, Hammond HA, Dugan V, Hey PJ, Caskey CJ, et al. (1996) Leptin receptor missense mutation in the fatty Zucker rat. Nat Genet 13(1):18–19

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Peterson RG, Shaw WN, Neel M-A, Little LA, Eichberg J (1990) Zucker diabetic fatty rat as a model for non-insulin-dependent diabetes mellitus. ILAR J 32(3):16–19

    Article  Google Scholar 

  59. 59.

    Srinivasan K, Ramarao P (2007) Animal models in type 2 diabetes research: an overview. Indian J Med Res 125(3):451–472

    CAS  PubMed  Google Scholar 

  60. 60.

    Pick A, Clark J, Kubstrup C, Levisetti M, Pugh W, Bonner-Weir S, et al. (1998) Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat. Diabetes 47(3):358–364

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Fajardo RJ, Karim L, Calley VI, Bouxsein ML (2014) A review of rodent models of type 2 diabetic skeletal fragility. J Bone Miner Res 29(5):1025–1040

    Article  PubMed  Google Scholar 

  62. 62.

    GOTO Y, Kakizaki M, Masaki N (1976) Production of spontaneous diabetic rats by repetition of selective breeding. Tohoku J Exp Med 119(1):85–90

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Abdel-Halim SM, Guenifi A, Luthman H, Grill V, Efendic S, Östenson C-G (1994) Impact of diabetic inheritance on glucose tolerance and insulin secretion in spontaneously diabetic GK-Wistar rats. Diabetes 43(2):281–288

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Cao Y, DuBois DC, Sun H, Almon RR, Jusko WJ (2011) Modeling diabetes disease progression and salsalate intervention in Goto-Kakizaki rats. J Pharmacol Exp Ther 339(3):896–904

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Portha B, Giroix M, Serradas P, Gangnerau M, Movassat J, Rajas F, et al. (2001) Beta-cell function and viability in the spontaneously diabetic GK rat: information from the GK/Par colony. Diabetes 50(suppl 1):S89

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Zhang L, Liu Y, Wang D, Zhao X, Qiu Z, Ji H, et al. (2009) Bone biomechanical and histomorphometrical investment in type 2 diabetic Goto-Kakizaki rats. Acta Diabetol 46(2):119–126

    Article  PubMed  Google Scholar 

  67. 67.

    Scherzer P, Katalan S, Got G, Pizov G, Londono I, Gal-Moscovici A, et al. (2011) Psammomys obesus, a particularly important animal model for the study of the human diabetic nephropathy. Anatomy & cell biology 44(3):176–185

    Article  Google Scholar 

  68. 68.

    Walder KR, Fahey RP, Morton GJ, Zimmet PZ, Collier GR (2000) Characterization of obesity phenotypes in Psammomys obesus (Israeli sand rats). Journal of Diabetes Research 1(3):177–184

    CAS  Google Scholar 

  69. 69.

    Amir G, Adler J, Menczel J (1991) Histomorphometric analysis of weight bearing bones of diabetic and non-diabetic sand rats (Psammomys obesus). Diabetes research (Edinburgh, Scotland) 17(3):135–137

    CAS  Google Scholar 

  70. 70.

    Srinivasan K, Patole PS, Kaul CL, Ramarao P (2004) Reversal of glucose intolerance by by pioglitazone in high fat diet-fed rats. Methods Find Exp Clin Pharmacol 26(5):327–333

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Storlien L, James D, Burleigh K, Chisholm D, Kraegen E (1986) Fat feeding causes widespread in vivo insulin resistance, decreased energy expenditure, and obesity in rats. American Journal of Physiology-Endocrinology And Metabolism 251(5):E576–EE83

    CAS  Google Scholar 

  72. 72.

    Lavet C, Martin A, Linossier MT, Bossche AV, Laroche N, Thomas M, et al. (2016) Fat and sucrose intake induces obesity-related bone metabolism disturbances: kinetic and reversibility studies in growing and adult rats. J Bone Miner Res 31(1):98–115

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Albrektsson T, Wennerberg A (2004) Oral implant surfaces: part 1—review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthodont 17(5):536–543

    PubMed  Google Scholar 

  74. 74.

    Klein GL (2014) Insulin and bone: recent developments. World J Diabetes 5(1):14–16

    Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Leslie WD, Rubin MR, Schwartz AV, Kanis JA (2012) Type 2 diabetes and bone. J Bone Miner Res Off J Am Soc Bone Miner Res 27(11):2231–2237

    Article  Google Scholar 

  76. 76.

    McCullough LD, de Vries GJ, Miller VM, Becker JB, Sandberg K, McCarthy MM (2014) NIH initiative to balance sex of animals in preclinical studies: generative questions to guide policy, implementation, and metrics. Biol Sex Differ 5:15

    Article  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Compston JE (2001) Sex steroids and bone. Physiol Rev 81(1):419–447

    CAS  PubMed  Google Scholar 

  78. 78.

    Gale EA, Gillespie KM (2001) Diabetes and gender. Diabetologia 44(1):3–15

    CAS  Article  PubMed  Google Scholar 

  79. 79.

    Huxley R, Barzi F, Woodward M (2006) Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. BMJ: British Medical Journal 332(7533):73–78

    Article  PubMed  PubMed Central  Google Scholar 

  80. 80.

    French D, Larjava H, Ofec R (2015) Retrospective cohort study of 4591 Straumann implants in private practice setting, with up to 10-year follow-up. Part 1: multivariate survival analysis. Clin Oral Implants Res 26(11):1345–1354

    Article  PubMed  Google Scholar 

  81. 81.

    Chrcanovic BR, Kisch J, Albrektsson T, Wennerberg A. (2016) Factors influencing early dental implant failures. J Dent Res

Download references

Acknowledgments

A/Prof. Levinger was supported by Future Leader Fellowship (ID 100040) from the National Heart Foundation of Australia, and Dr. Brennan-Speranza was supported by an NHMRC Early Career Research Fellowship (ID 1013295).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tara C. Brennan-Speranza.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

King, S., Klineberg, I., Levinger, I. et al. The effect of hyperglycaemia on osseointegration: a review of animal models of diabetes mellitus and titanium implant placement. Arch Osteoporos 11, 29 (2016). https://doi.org/10.1007/s11657-016-0284-1

Download citation

Keywords

  • Animal models
  • Implants
  • Biochemical markers of bone turnover