Skip to main content
Log in

Rapid Antidepressant-Like Potential of Chaihu Shugan San Depends on Suppressing Glutamate Neurotransmission and Activating Synaptic Proteins in Hippocampus of Female Mice

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To explore the rapid antidepressant potential and the underlying mechanism of Chaihu Shugan San (CSS) in female mice.

Methods

Liquid chromatography mass spectrometry (LC-MS)/MS was used to determine the content of main components in CSS to determine its stability. Female C57BL/6J mice were randomly divided into 4 groups, including control (saline), vehicle (saline), CSS (4 g/kg) and ketamine (30 mg/kg) groups. Mice were subjected to irregular stress stimulation for 4 weeks to establish the chronic mild stress (CMS) model, then received a single administration of drugs. Two hours later, the behavioral tests were performed, including open field test, tail suspension test (TST), forced swimming test (FST), novelty suppression feeding test (NSF), and sucrose preference test (SPT). Western blot analysis was used to detect the expression levels of N-methyl-D-aspartate receptor (NMDA) subtypes [N-methyl-D-aspartate receptor 1 (NR1), NR2A, NR2B], synaptic proteins [synapsin1 and post synaptic density protein 95 (PSD95)], and brain-derived neurotrophic factor (BDNF). Moreover, the rapid antidepressant effect of CSS was tested by pharmacological technologies and optogenetic interventions that activated glutamate receptors, NMDA.

Results

Compared with the vehicle group, a single administration of CSS (4 g/kg) reversed all behavioral defects in TST, FST, SPT and NSF caused by CMS (P<0.05 or P<0.01). CSS also significantly decreased the expressions of NMDA subtypes (NR1, NR2A, NR2B) at 2 h in hippocampus of mice (all P<0.01). In addition, similar to ketamine, CSS increased levels of synaptic proteins and BDNF (P<0.05 or P<0.01). Furthermore, the rapid antidepressant effects of CSS were blocked by transient activation of NMDA receptors in the hippocampus (all P<0.01).

Conclusion

Rapid antidepressant effects of CSS by improving behavioral deficits in female CMS mice depended on rapid suppression of NMDA receptors and activation of synaptic proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ely BA, Nguyen TNB, Tobe RH, Walker AM, Gabbay V. Multimodal investigations of reward circuitry and anhedonia in adolescent depression. Front Psychiatry 2021;12:678709.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wang Z, Cheng YT, Lu Y, Sun GQ, Pei L. Baicalin ameliorates corticosterone-induced depression by promoting neurodevelopment of hippocampal via mTOR/GSK3 β pathway. Chin J Integr Med 2023;29:405–412.

    Article  CAS  PubMed  Google Scholar 

  3. Kleih TS, Entringer S, Scholaske L, Kathmann N, DePunder K, Heim CM, et al. Exposure to childhood maltreatment and systemic inflammation across pregnancy: the moderating role of depressive symptomatology. Brain Behav Immun 2022;101:397–409.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kanezawa S, Zhu YB, Wang Q. Correlation between Chinese medicine constitution and skin types: a study on 187 Japanese women. Chin J Integr Med 2020;26:174–179.

    Article  PubMed  Google Scholar 

  5. Wang J, Cosci F. Neonatal withdrawal syndrome following late in utero exposure to selective serotonin reuptake inhibitors: a systematic review and meta-analysis of observational studies. Psychother Psychosom 2021;90:299–307.

    Article  PubMed  Google Scholar 

  6. Kim J, Farchione T, Potter A, Chen Q, Temple R. Esketamine for treatment-resistant depression—first FDA-approved antidepressant in a new class. N Engl J Med 2019;381:1–4.

    Article  PubMed  Google Scholar 

  7. Wilkinson ST, Sanacora G. A new generation of antidepressants: an update on the pharmaceutical pipeline for novel and rapid-acting therapeutics in mood disorders based on glutamate/GABA neurotransmitter systems. Drug Discov Today 2019;24:606–615.

    Article  CAS  PubMed  Google Scholar 

  8. McIntyre RS, Rosenblat JD, Nemeroff CB, Sanacora G, Murrough JW, Berk M, et al. Synthesizing the evidence for ketamine and esketamine in treatment-resistant depression: an international expert opinion on the available evidence and implementation. Am J Psychiatry 2021;178:383–399.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shi X, Zhang Q, Li J, Liu X, Zhang Y, Huang M, et al. Disrupting phosphorylation of Tyr-1070 at GluN2B selectively produces resilience to depression-like behaviors. Cell Rep 2021;36:109612.

    Article  CAS  PubMed  Google Scholar 

  10. Akil H, Nestler EJ. The neurobiology of stress: vulnerability, resilience, and major depression. Proc Natl Acad Sci U S A 2023;120:e2312662120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang S, Deng Q, Zhao Y, Chen G, Geng A, Wang X. l-Glutamate seed priming enhances 2-acetyl-1-pyrroline formation in fragrant rice seedlings in response to arsenite stress. J Agric Food Chem 2023;71:18443–18453.

    Article  CAS  PubMed  Google Scholar 

  12. Natarajan S, Abass G, Kim L, Wells C, Rezvani AH, Levin ED. Acute and chronic glutamate NMDA antagonist treatment attenuates dopamine D1 antagonist-induced reduction of nicotine self-administration in female rats. Pharmacol Biochem Behav 2023;234:173678.

    Article  PubMed  Google Scholar 

  13. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 2010;329:959–964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Min R, Nevian T. Astrocyte signaling controls spike timing-dependent depression at neocortical synapses. Nat Neurosci 2012;15:746–753.

    Article  CAS  PubMed  Google Scholar 

  15. Xia B, Zhang H, Xue W, Tao W, Chen C, Wu R, et al. Instant and lasting down-regulation of NR1 expression in the hippocampus is associated temporally with antidepressant activity after acute Yueju. Cell Mol Neurobiol 2016;36:1189–1196.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang H, Sun Y, Qian S, Ge R, Guo X, Shen Q, et al. Yueju-Ganmaidazao Decoction confers rapid antidepressant-like effects and the involvement of suppression of NMDA/NO/cGMP signaling. J Ethnopharmacol 2020;250:112380.

    Article  CAS  PubMed  Google Scholar 

  17. Miller OH, Yang L, Wang CC, Hargroder EA, Zhang Y, Delpire E, et al. GluN2B-containing NMDA receptors regulate depression-like behavior and are critical for the rapid antidepressant actions of ketamine. Elife 2014;3:e03581.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Burgdorf JS, Zhang XL, Stanton PK, Moskal JR, Donello JE. Zelquistinel is an orally bioavailable novel NMDA receptor allosteric modulator that exhibits rapid and sustained antidepressant-like effects. Int J Neuropsychopharmacol 2022;25:979–991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Camargo A, Dalmagro AP, Alte GA, Zeni ALB, Tasca CI, Rodrigues ALS. NMDA receptor-mediated modulation on glutamine synthetase and glial glutamate transporter GLT-1 is involved in the antidepressant-like and neuroprotective effects of guanosine. Chem Biol Interact 2023;375:110440.

    Article  CAS  PubMed  Google Scholar 

  20. Araujo JRC, Junior J, Damasceno M, Santos S, Vieira-Neto AE, Lobo MDP, et al. Neuropharmacological characterization of frutalin in mice: evidence of an antidepressant-like effect mediated by the NMDA receptor/NO/cGMP pathway. Int J Biol Macromol 2018;112:548–554.

    Article  CAS  PubMed  Google Scholar 

  21. Gordillo-Salas M, Pilar-Cuellar F, Auberson YP, Adell A. Signaling pathways responsible for the rapid antidepressant-like effects of a GluN2A-preferring NMDA receptor antagonist. Transl Psychiatry 2018;8:84.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Shi ZW, Kang LP, Peng HS, Yang SH, Zhang LX, Jing ZX, et al. Exploring the clinical characters of Shugan Jieyu Capsule through text mining. China J Chin Mater Med (Chin) 2017;42:3435–3442.

    CAS  Google Scholar 

  23. Xie W, Qiu X, Huang X, Xie Y, Wu K, Wang Y, et al. Comparison between the pharmacokinetics of meranzin hydrate in a rat model of chronic depression and in controls following the oral administration of Chaihu-Shugan-San. Exp Ther Med 2013;6:913–918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jia KK, Pan SM, Ding H, Liu JH, Zheng YJ, Wang SJ, et al. Chaihu-shugan San inhibits inflammatory response to improve insulin signaling in liver and prefrontal cortex of CUMS rats with glucose intolerance. Biomed Pharmacother 2018;103:1415–1428.

    Article  PubMed  Google Scholar 

  25. Willner P. The chronic mild stress (CMS) model of depression: history, evaluation and usage. Neurobiol Stress 2017;6:78–93.

    Article  PubMed  Google Scholar 

  26. Weinstock M. Prenatal stressors in rodents: effects on behavior. Neurobiol Stress 2017;6:3–13.

    Article  PubMed  Google Scholar 

  27. Liu YL, Xu JJ, Han LR, Liu XF, Lin MH, Wang Y, et al. Meranzin hydrate improves depression-like behaviors and hypomotility via ghrelin and neurocircuitry. Chin J Integr Med 2023;29:490–499.

    Article  CAS  PubMed  Google Scholar 

  28. Wu L, Zhang T, Chen K, Lu C, Liu XF, Zhou JL, et al. Rapid antidepressant-like effect of Fructus Aurantii depends on cAMP-response element binding protein/brain-derived neurotrophic facto by mediating synaptic transmission. Phytother Res 2021;35:404–414.

    Article  CAS  PubMed  Google Scholar 

  29. Shi X, Bai H, Wang J, Wang J, Huang L, He M, et al. Behavioral assessment of sensory, motor, emotion, and cognition in rodent models of intracerebral hemorrhage. Front Neurol 2021;12:667511.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Camargo A, Pazini FL, Rosa JM, Wolin IAV, Moretti M, Rosa PB, et al. Augmentation effect of ketamine by guanosine in the novelty-suppressed feeding test is dependent on mTOR signaling pathway. J Psychiatr Res 2019;115:103–112.

    Article  PubMed  Google Scholar 

  31. Pesarico AP, Stangherlin EC, Rosa SG, Mantovani AC, Zeni G, Nogueira CW. Contribution of NMDA, GABAA and GABAB receptors and l-arginine-NO-cGMP, MEK1/2 and CaMK-II pathways in the antidepressant-like effect of 7-fluoro-1,3-diphenylisoquinoline-1-amine in mice. Eur J Pharmacol 2016;782:6–13.

    Article  CAS  PubMed  Google Scholar 

  32. Han SK, Kim JK, Park HS, Shin YJ, Kim DH. Chaihu-Shugan-San (Shihosogansan) alleviates restraint stress-generated anxiety and depression in mice by regulating NF-κ B-mediated BDNF expression through the modulation of gut microbiota. Chin Med 2021;16:77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang S, Lu Y, Chen W, Shi W, Zhao Q, Zhao J, et al. Network pharmacology and experimental evidence: PI3K/AKT signaling pathway is involved in the antidepressive roles of Chaihu Shugan San. Drug Des Devel Ther 2021;15:3425–3441.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zeng Q, Li L, Siu W, Jin Y, Cao M, Li W, et al. A combined molecular biology and network pharmacology approach to investigate the multi-target mechanisms of Chaihu Shugan San on Alzheimer’s disease. Biomed Pharmacother 2019;120:109370.

    Article  CAS  PubMed  Google Scholar 

  35. Gerhard DM, Pothula S, Liu RJ, Wu M, Li XY, Girgenti MJ, et al. GABA interneurons are the cellular trigger for ketamine’s rapid antidepressant actions. J Clin Invest 2020;130:1336–1349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xue W, Zhou X, Yi N, Jiang L, Tao W, Wu R, et al. Yueju Pill rapidly induces antidepressant-like effects and acutely enhances BDNF expression in mouse brain. Evid Based Complement Alternat Med 2013;2013:184367.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dogra S, Kumar A, Umrao D, Sahasrabuddhe AA, Yadav PN. Chronic kappa opioid receptor activation modulates NR2B: implication in treatment resistant depression. Sci Rep 2016;6:33401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jiang J, Zheng Y, Chen Y, Zahra A, Long C, Yang L. Exposure to prenatal antidepressant alters medial prefrontalstriatal synchronization in mice. Brain Res 2019;1717:27–34.

    Article  CAS  PubMed  Google Scholar 

  39. Murphy N, Lijffijt M, Ramakrishnan N, Vo-Le B, Vo-Le B, Iqbal S, et al. Does mismatch negativity have utility for NMDA receptor drug development in depression? Braz J Psychiatry 2022;44:61–73.

    Article  PubMed  Google Scholar 

  40. Duman RS, Aghajanian GK, Sanacora G, Krystal JH. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med 2016;22:238–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tang XH, Zhang GF, Xu N, Duan GF, Jia M, Liu R Z, et al. Extrasynaptic CaMK II α is involved in the antidepressant effects of ketamine by downregulating GluN2B receptors in an LPS-induced depression model. J Neuroinflammation 2020;17:181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Viana GSB, Vale EMD, Araujo ARA, Coelho NC, Andrade SM, Costa ROD, et al. Rapid and long-lasting antidepressant-like effects of ketamine and their relationship with the expression of brain enzymes, BDNF, and astrocytes. Braz J Med Biol Res 2020;54:e10107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Aleksandrova LR, Phillips AG. Neuroplasticity as a convergent mechanism of ketamine and classical psychedelics. Trends Pharmacol Sci 2021;42:929–942.

    Article  CAS  PubMed  Google Scholar 

  44. Chen MH, Wu HJ, Li CT, Lin WC, Tsai SJ, Hong CJ, et al. Low-dose ketamine infusion for treating subjective cognitive, somatic, and affective depression symptoms of treatment-resistant depression. Asian J Psychiatr 2021;66:102869.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Lu C, Gao ZW and Wu L conceived and designed the experiments. Wu L, Gao ZW, Huang YK, Lu C, and Wang HH performed the experiments. Wu L, Lu C and Zhou H analyzed the data. Lu C, Xing S and Wu L contributed to the writing of the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Lei Wu.

Ethics declarations

The authors declare no competing financial interest.

Additional information

Supported by the National Natural Science Foundation of China (No. 82174107, 82304898), Jiangsu Provincial Administration of Traditional Chinese Medicine Fund (No. YB2020014), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (No. 035062005001)

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Gao, Zw., Xing, S. et al. Rapid Antidepressant-Like Potential of Chaihu Shugan San Depends on Suppressing Glutamate Neurotransmission and Activating Synaptic Proteins in Hippocampus of Female Mice. Chin. J. Integr. Med. (2024). https://doi.org/10.1007/s11655-024-3906-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11655-024-3906-2

Keywords

Navigation