Skip to main content
Log in

Antibacterial Activity of Plants in Cirsium: A Comprehensive Review

  • Review
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

As ethnic medicine, the whole grass of plants in Cirsium was used as antimicrobial. This review focuses on the antimicrobial activity of plants in Cirsium, including antimicrobial components, against different types of microbes and bacteriostatic mechanism. The results showed that the main antimicrobial activity components in Cirsium plants were flavonoids, triterpenoids and phenolic acids, and the antimicrobial ability varied according to the species and the content of chemicals. Among them, phenolic acids showed a strong antibacterial ability against Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterococcus faecium. The antibacterial mechanisms include: (1) damaging the cell membrane, cell walls, mitochondria and nucleus of bacteria; (2) inhibiting the synthesis of proteins and nucleic acids; (3) suppressing the synthesis of enzymes for tricarboxylic acid cycle pathways and glycolysis, and then killing the bacteria via inhibition of energy production. Totally, most research results on antimicrobial activity of Cirsium plants are reported based on in vitro assays. The evidence from clinical data and comprehensive evaluation are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bao M, Zhang L, Liu B, et al. Synergistic effects of anti-MRSA herbal extracts combined with antibiotics. Future Microbiol 2020;15:1265–1276.

    Article  CAS  PubMed  Google Scholar 

  2. Sasidharan S, Chen Y, Saravanan D, et al. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J Tradit Complement Altern Med 2011;8:1–10.

    CAS  PubMed  Google Scholar 

  3. Luo W, Wu B, Tang L, et al. Recent research progress of Cirsium medicinal plants in China. J Ethnopharmacol 2021;280:114475.

    Article  CAS  PubMed  Google Scholar 

  4. Chassagne F, Samarakoon T, Porras G, et al. A systematic review of plants with antibacterial activities: a taxonomic and phylogenetic perspective. Front Pharmacol 2021;8:586548.

    Article  Google Scholar 

  5. Proškovcová M, Čonková E, Váczi P, et al. Antibiofilm activity of selected plant essential oils from the Lamiaceae family against Candida albicans clinical isolates. Ann Agric Environ Med 2021;28:260–266.

    Article  PubMed  Google Scholar 

  6. Zhang M, Wang J, Zhu L, et al. Zanthoxylum bungeanum Maxim. (Rutaceae): a systematic review of its traditional uses, botany, phytochemistry, pharmacology, pharmacokinetics, and toxicology. Int J Mol Sci 2017;18:2172.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Meng X, Li J, Li M, et al. Traditional uses, phytochemistry, pharmacology and toxicology of the genus Gynura (Compositae): a comprehensive review. J Ethnopharmacol 2021;276:114145.

    Article  CAS  PubMed  Google Scholar 

  8. Yoon MY, Choi GJ, Choi YH, et al. Antifungal activity of polyacetylenes isolated from Cirsium japonicum roots against various phytopathogenic fungi. Ind Crops Prod 2011;34:882–887.

    Article  CAS  Google Scholar 

  9. Kozyra M, Mardarowicz M, Kochmańska J. Chemical composition and variability of the volatile components from inflorescences of Cirsium species. Nat Prod Res 2015;29:1942–1944.

    Article  CAS  PubMed  Google Scholar 

  10. Nazaruk J, Czechowska SK, Markiewicz R, et al. Polyphenolic compounds and in vitro antimicrobial and antioxidant activity of aqueous extracts from leaves of some Cirsium species. Nat Prod Res 2008;22:1583–1588.

    Article  CAS  PubMed  Google Scholar 

  11. Kozyra M, Biernasiuk A, Malm A, et al. Chemical compositions and antibacterial activity of extracts obtained from the inflorescences of Cirsium canum (L.) all. Nat Prod Res 2015;29:2059–2063.

    Article  CAS  PubMed  Google Scholar 

  12. Basavegowda N, Baek KH. Synergistic antioxidant and antibacterial advantages of essential oils for food packaging applications. Biomolecules 2021;11:1267–1285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zheleva-Dimitrova D, Zengin G, Ak G, et al. Innovative biochemometric approach to the metabolite and biological profiling of the Balkan Thistle (Cirsium appendiculatum Griseb.), Asteraceae. Plants 2021;10:2046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kebede T, Gadisa E, Tufa A. Antimicrobial activities evaluation and phytochemical screening of some selected medicinal plants: a possible alternative in the treatment of multidrug-resistant microbes. PLoS One 2021;16:e0249253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kessler A, Kalske A. Plant secondary metabolite diversity and species interactions. Annu Rev Ecol Evol Syst 2018;49:115–138.

    Article  Google Scholar 

  16. Hüttel W, Müller M. Regio- and stereoselective intermolecular phenol coupling enzymes in secondary metabolite biosynthesis. Nat Prod Rep 2021;38:1011–1043.

    Article  PubMed  Google Scholar 

  17. Jordon-Thaden IE, Louda SM. Chemistry of Cirsium and Carduus: a role in ecological risk assessment for biological control of weeds? Biochem Syst Ecol 2003;31:1353–1396.

    Article  CAS  Google Scholar 

  18. Tim Cushnie TP, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob 2005;26:343–356.

    Article  Google Scholar 

  19. Sabudak T, Caliskan H, Orak HH, et al. Biological activity of new flavonoids and phenolic compounds from Cirsium italicum (Savi) DC. Nat Prod Res 2021;35:1613–1619.

    Article  CAS  PubMed  Google Scholar 

  20. Kurç MA, Orak HH, Güllen D, et al. Antimicrobial and antioxidant efficacy of the lipophilic extract of cirsium vulgare. Molecules 2023;28:7177.

    Article  Google Scholar 

  21. Fernández-Martínez E, Díaz-Espinoza R, Pérez-Escandón MN, et al. Preliminary phytochemical and biological study of Cirsium ehrenbergii. Proc West Pharmacol Soc 2014;50:162–164.

    Google Scholar 

  22. Dehjurian A, Lari J, Motavalizadehkakhky A. Anti-bacterial activity of extract and the chemical composition of essential oils in Cirsium arvense from Iran. J Essent Oil Bear Pl 2017;20:1162–1166.

    Article  CAS  Google Scholar 

  23. Ozer M, Caliskan H, Orak HH, et al. Bioactive compounds, antibacterial and antifungal activities of two Cirsium species. Acta Sci Pol Hortorum Cultus 2019;18:213–221.

    Article  Google Scholar 

  24. Kozyra M, Mardarowicz M, Kochmanska J. Chemical composition and variability of the volatile components from inflorescences of Cirsium species. Nat Prod Res 2015;29:1942–1944.

    Article  CAS  PubMed  Google Scholar 

  25. Kozyra M, Glowniak K. Phenolic acids in extracts obtained from the flowering herbs of Cirsium vulgare (Savi) Ten. growing in Poland. Acta Soc Bot Pol 2013;82:325–329.

    Article  CAS  Google Scholar 

  26. Kozyra M, Woèniak S. Quantitative analysis of flavonids and phenolic acids from inflorescences and aerial parts of selected Cirsium species using ASE method. Acta Pol Pharm 2014;71:877–881.

    CAS  PubMed  Google Scholar 

  27. Bernal-Mercado A, Vazquez-Armenta F, Tapia-Rodriguez M, et al. Comparison of single and combined use of catechin, protocatechuic, and vanillic acids as antioxidant and antibacterial agents against uropathogenic Escherichia Coli at planktonic and biofilm levels. Molecules 2018;23:2813.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Park MY, Kang DH. Antibacterial activity of caffeic acid combined with UV-A light against Escherichia Coli O157:H7, Salmonella enterica Serovar Typhimurium, and Listeria monocytogenes. Appl Environ Microbiol 2021;87:1–14.

    Article  Google Scholar 

  29. Kim JH, Yu D, Eom SH, et al. Synergistic antibacterial effects of chitosan-caffeic acid conjugate against antibiotic-resistant acne-related bacteria. Mar Drugs 2017;15:167.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Khan A, Amin A, Khan MA, et al. In vitro screening of Circium arvense for potential antibacterial and antifungal activities. Pak J Pharm Sci 2011;24:519–522.

    PubMed  Google Scholar 

  31. Fernández-Martínez E, Díaz-Espinoza R, Villavicencio-Nieto MA, et al. Preliminary phytochemical and biological study of Cirsium ehrenbergii. Proc West Pharmacol Soc 2007;50:162–164.

    PubMed  Google Scholar 

  32. Porras G, Chassagne F, Lyles JT, et al. Ethnobotany and the role of plant natural products in antibiotic drug discovery. Chem Rev 2021;121:3495–3560.

    Article  CAS  PubMed  Google Scholar 

  33. Kenny O, Smyth TJ, Walsh D, et al. Investigating the potential of under-utilised plants from the Asteraceae family as a source of natural antimicrobial and antioxidant extracts. Food Chem 2014;161:79–86.

    Article  CAS  PubMed  Google Scholar 

  34. Yang L, Zhong L, Ma Z, et al. Antifungal effects of alantolactone on Candida albicans: an in vitro study. Biomed Pharmacother 2022;149:112814.

    Article  CAS  PubMed  Google Scholar 

  35. Park JY, Yun H, Jo J, et al. Beneficial effects of Cirsium japonicum var. maackii on menopausal symptoms in ovariectomized rats. Food Funct 2018;9:2480–2489.

    Article  CAS  PubMed  Google Scholar 

  36. Kordali S, Usanmaz A, Cakir A, et al. Antifungal and herbicidal effects of fruit essential oils of four myrtus communis genotypes. Chem Biodivers 2016;13:77–84.

    Article  CAS  PubMed  Google Scholar 

  37. Yuan G, Guan Y, Yi H, et al. Antibacterial activity and mechanism of plant flavonoids to gram-positive bacteria predicted from their lipophilicities. Sci Rep 2021;11:10471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Górniak I, Bartoszewski R, Króliczewski J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem Rev 2018;18:241–272.

    Article  Google Scholar 

  39. Sun J, Sun W, Zhang G, et al. High efficient production of plant flavonoids by microbial cell factories: challenges and opportunities. Metab Eng 2022;70:143–154.

    Article  CAS  PubMed  Google Scholar 

  40. Prabuseenivasan S, Jayakumar M, Ignacimuthu S. In vitro antibacterial activity of some plant essential oils. BMC Complement Altern Med 2015;36:1329–1336.

    Google Scholar 

  41. Trombetta D, Castelli F, Sarpietro MG, et al. Mechanisms of antibacterial action of three monoterpenes. Antimicrob Agents Chemother 2005;49:2474–2478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fernando B, Bruce RL. Proximate and ultimate causes of the bactericidal action of antibiotics. Nat Rev Microbiol 2021;19:123–132.

    Article  Google Scholar 

  43. Xie Y, Yang W, Tang F, et al. Antibacterial activities of flavonoids: structure-activity relationship and mechanism. Curr Med Chem 2015;22:132–149.

    Article  CAS  PubMed  Google Scholar 

  44. Cushnie TP, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Agents 2005;26:343–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guo F, Liang Q, Zhang M, et al. Antibacterial activity and mechanism of linalool against Shewanella putrefaciens. Molecules 2021;26:245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen C, Long L, Zhang F, et al. Antifungal activity, main active components and mechanism of Curcuma longa extract against Fusarium graminearum. PLoS One 2018;13:e0194284.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Li J, Li CZ, Shi C, et al. Antibacterial mechanisms of clove essential oil against Staphylococcus aureus and its application in pork. Int J Food Microbiol 2022;380:109864.

    Article  CAS  PubMed  Google Scholar 

  48. Weng M, You S, Luo J, et al. Antibacterial mechanism of polysaccharides from the leaves of Lindera aggregata (Sims) Kosterm. by metabolomics based on HPLC/MS. Int J Biol Macromol 2022;221:303–313.

    Article  CAS  PubMed  Google Scholar 

  49. Li ZJ, Zhou X, Liao DX, et al. Comparative genomics and DNA methylation analysis of Pseudomonas aeruginosa clinical isolate PA3 by single-molecule real-time sequencing reveals new targets for antimicrobials. Front Cell Infect Microbiol 2023;13:1180194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li X, Jing T, Wu C, et al. Molecular epidemiology and genomic characterization of a plasmid-mediated MCR-10 and BLA(NDM-1) co-harboring multidrug-resistant Enterobacter asburiae. Comput Struct Biotechnol J 2023;21:3885–3893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang J, Sheng Z, Liu Y, et al. Combined proteomic and transcriptomic analysis of the antimicrobial mechanism of tannic acid against Staphylococcus aureus. Front Pharmacol 2023;14:1178177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Van DD, Yohei D. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence 2017;8:460–469.

    Article  Google Scholar 

  53. Ajaib M, Anjum M, Zahra S, et al. Investigation of antimicrobial and antioxidant activities of Cirsium wallichii DC. Biologia (Pakistan) 2016;62:297–304.

    Google Scholar 

  54. Rewaa A, Tarek K, Gamal E, et al. The healing capability of clove flower extract (CFE) in streptozotocin-induced (STZ-induced) diabetic rat wounds infected with multidrug resistant bacteria. Molecules 2022;27:27072270.

    Google Scholar 

  55. Borawska MH, Czechowska SK, Markiewicz R, et al. Enhancement of antibacterial effects of extracts from Cirsium species using sodium picolinate and estimation of their toxicity. Nat Prod Res 2010;24:554–610.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Wang HQ and Lu YY contributed equally to this work. Wang HQ and Lu YY contributed to the conception of the review. Tang XM, Xie MX and Guo JL prepared the first draft of the manuscript. Tang XM, Chen L, TianJL and Zhang X performed the literature search. Wang HQ and Lu YY edited the review. All authors approved the final version for publication.

Corresponding author

Correspondence to Han-qing Wang.

Ethics declarations

All the authors declared that no competing interests.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Xm., Xie, Mx., Gou, Jl. et al. Antibacterial Activity of Plants in Cirsium: A Comprehensive Review. Chin. J. Integr. Med. (2024). https://doi.org/10.1007/s11655-024-3757-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11655-024-3757-2

Keywords

Navigation