Skip to main content

Advertisement

Log in

Application and Effectiveness of Chinese Medicine in Regulating Immune Checkpoint Pathways

  • Review
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Immunotherapy targeting immune checkpoint molecules has emerged as a key approach in cancer treatment, representing the forefront of antitumor research. However, studies on immune checkpoint molecules have mainly focused on targeted therapies. Chinese medicine (CM) research as a complementary medicine has revealed that immune checkpoint molecules also undergo disease-specific changes in the context of autoimmune diseases. This review article presents a comprehensive analysis of CM studies on immune checkpoint molecules in the last 5 years, with a focus on their role in different diseases and treatment modalities. CM research predominantly utilizes oral administration of herbal plant extracts or acupuncture techniques, which stimulate the immune system by activating specific acupoints through temperature and needling. In this study, we analyzed the modulation and mechanisms of immune checkpoint molecules associated with different coinhibitory and costimulatory molecules, and reviewed the immune functions of related molecules and CM studies in treating autoimmune diseases and tumors. By summarizing the characteristics and research value of CM in regulating immune checkpoint molecules, this review aims to provide a useful reference for future studies in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zheng R, Zhang S, Zeng H, et al. Cancer incidence and mortality in China, 2016. J Natl Cancer Cent 2022;2:1–9.

    Article  Google Scholar 

  2. Morad G, Helmink BA, Sharma P, et al. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 2021;184:5309–5337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jhunjhunwala S, Hammer C, Delamarre L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat Rev Cancer 2021;21:298–312.

    Article  CAS  PubMed  Google Scholar 

  4. Snyder AG, Oberst A. The antisocial network: cross talk between cell death programs in host defense. Annu Rev Immunol 2021;39:77–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tada T, Kumada T, Toyoda H, et al. Long-term natural history of liver disease in patients with chronic hepatitis B virus infection: an analysis using the Markov chain model. J Gastroenterol 2018;53:1196–1205.

    Article  CAS  PubMed  Google Scholar 

  6. Kondo Y, Yokosawa M, Kaneko S, et al. Transcriptional regulation of CD4+ T cell differentiation in experimentally induced arthritis and rheumatoid arthritis. Arthritis Rheumatol 2018;70:653–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhong WL, Xiang SW, Liu QC, et al. Experimental research progress of traditional Chinese medicine in treating diabetic nephropathy. Mil Med J S Chin (Chin) 2022;36:675–679.

    CAS  Google Scholar 

  8. Yang G, Zheng BJ, Yu Y, et al. Electroacupuncture at Zusanli (ST 36), Guanyuan (CV 4), and Qihai (CV 6) acupoints regulates immune function in patients with sepsis via the PD-1 pathway. Biomed Res Int 2022;2022:7037497.

    PubMed  PubMed Central  Google Scholar 

  9. Zhang XW, Feng N, Liu YC, et al. Neuroinflammation inhibition by small-molecule targeting USP7 noncatalytic domain for neurodegenerative disease therapy. Sci Adv 2022;8:eabo0789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Valk E, Leung R, Kang H, et al. T cell receptor-interacting molecule acts as a chaperone to modulate surface expression of the CTLA-4 coreceptor. Immunity 2006;25:807–821.

    Article  CAS  PubMed  Google Scholar 

  11. Valk E, Rudd CE, Schneider H. CTLA-4 trafficking and surface expression. Trends Immunol 2008;29:272–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Atsaves V, Leventaki V, Rassidakis GZ, et al. AP-1 transcription factors as regulators of immune responses in cancer. Cancers 2019;11:1037–1057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rudd CE, Taylor A, Schneider H. CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol Rev 2009;229:12–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu Z, Li CF, Mkhikian H, et al. Family studies of type 1 diabetes reveal additive and epistatic effects between MGAT1 and three other polymorphisms. Genes Immun 2014;15:218–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Coillie SV, Wiernicki B, Xu J. Molecular and cellular functions of CTLA-4. In: Xu, J, ed. Regulation of cancer immune checkpoints. Advances in experimental medicine and biology. Singapore: Springer;2020:7–32.

    Chapter  Google Scholar 

  16. Qureshi OS, Kaur S, Hou TZ, et al. Constitutive clathrin-mediated endocytosis of CTLA-4 persists during T cell activation. J Biol Chem 2012;287:9429–9440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Janman D, Hinze X, Kennedy A, et al. Regulation of CTLA-4 recycling by LRBA and Rab11. Immunology 2021;164:106–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kennedy A, Waters E, Rowshanravan B, et al. Differences in CD80 and CD86 transendocytosis reveal CD86 as a key target for CTLA-4 immune regulation. Nat Immunol 2022;23:1365–1378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Juneja T, Kazmi M, Mellace M, et al. Utilization of Treg cells in solid organ transplantation. Front Immunol 2022;13:746889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sun X, Lin X, Diao J, et al. Pi (Spleen)-deficiency syndrome in tumor microenvironment is the pivotal pathogenesis of colorectal cancer immune escape. Chin J Integr Med 2016;22:789–794.

    Article  CAS  PubMed  Google Scholar 

  21. Hou LF, Li WJ, Li L, et al. Efficacy observation of Yiqi Yangxue Decoction combined with low-dose rituximab in treatment of patients with refractory immune thrombocytopenia. Med Pharm J Chin PLA (Chin) 2022;34:126–130.

    Google Scholar 

  22. Jiang Y, Zhang P, Cai YQ, et al. Effect of Yiqi Yangyin Jiedu Formula combined with anti-CTLA-4 monoclonal antibody on survival time and Foxp3 and CTLA-4 protein expression in tumor tissue of orthotopic lung cancer mice model. J Tradit Chin Med (Chin) 2021;62:908–913.

    Google Scholar 

  23. Jiang Y, Cai YQ, Zhang P, et al. Effect of Yiqi Yangyin Jiedu Formula and astragaloside W on CTLA-4-mediated immune escape of lung cancer in vitro. Chin Tradit Patent Med (Chin) 2021;43:2173–2177.

    Google Scholar 

  24. Xu SH, Luo HX, Huang BJ, et al. Therapeutic effect of catgut implantation at acupoint in a mouse model of hepatocellular carcinoma by suppressing immune escape. Evid Based Complement Alternat Med 2022;2022:5572869.

    PubMed  PubMed Central  Google Scholar 

  25. Jiang Y, Chen M, Nie H, et al. PD-1 and PD-L1 in cancer immunotherapy: clinical implications and future considerations. Hum Vaccin Immunother 2019;15:1111–1122.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov 2015;14:561–584.

    Article  CAS  PubMed  Google Scholar 

  27. Okada M, Chikuma S, Kondo T, et al. Blockage of core fucosylation reduces cell-surface expression of PD-1 and promotes anti-tumor immune responses of T cells. Cell Rep 2017;20:1017–1028.

    Article  CAS  PubMed  Google Scholar 

  28. Meng X, Liu X, Guo X, et al. FBXO38 mediates PD-1 ubiquitination and regulates anti-tumour immunity of T cells. Nature 2018;564:130–135.

    Article  CAS  PubMed  Google Scholar 

  29. Serman TM, Gack MU. FBXO38 drives PD-1 to destruction. Trends Immunol 2019;40:81–83.

    Article  CAS  PubMed  Google Scholar 

  30. Bordon Y. TOX for tired T cells. Nat Rev Immunol 2019;19:476.

    Article  CAS  PubMed  Google Scholar 

  31. Zhong YM, Wu F, Luo XC, et al. Mechanism on moxibustion for rheumatoid arthritis based on PD-1/PD-L1 signaling pathway. Chin Acupunct Moxibust (Chin) 2020;40:976–982.

    Google Scholar 

  32. Lai DL, Zhou HY, Tao Y, et al. Influence of moxibustion expressions of Lck and Fyn of TCR signal pathway of RA rats by adenovirus vector-mediated PD-1 intervention. Chin Arch Tradit Chin Med (Chin) 2019;37:45–48.

    CAS  Google Scholar 

  33. Wang Y, Wang X, Li Y, et al. Xuanfei Baidu Decoction reduces acute lung injury by regulating infiltration of neutrophils and macrophages via PD-1/IL17A pathway. Pharmacol Res 2022;176:106083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou M, Liu Y, Qin H, et al. Xuanfei Baidu Decoction regulates NETs formation via CXCL2/CXCR2 signaling pathway that is involved in acute lung injury. Biomed Pharmacother 2023;161:114530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang YX, Li HY, Sun JH, et al. Based on PD-1/PD-L1 signaling pathway investigate the influence of Fuyan Decoction on Treg/Th17 immune balance. Chin J Birth Health Heredity (Chin) 2022;30:744–749.

    Google Scholar 

  36. Wang YX, Tong GD, Huang JZ, et al. Clinical observation of optimized Bushen Shugan Decoction in treating chronic HBV carrying state and its effect on PD-1. Tradit Chin Drug Res Clin Pharmacol (Chin) 2022;33:531–536.

    CAS  Google Scholar 

  37. Xu Y, Wang H, Wang T, et al. Dahuang Fuzi Baijiang Decoction restricts progenitor to terminally exhausted T cell differentiation in colorectal cancer. Cancer Sci 2022;113:1739–1751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Min ML, Wu K, Zhu W, et al. Application effect of heat-sensitive moxibustion of PD-1 inhibitor-related gastrointestinal toxicity on malignancy tumor patients. Nurs Pract Res (Chin) 2022;19:1704–1708.

    Google Scholar 

  39. Jiao AN, Wu H, Zhu J, et al. Qiyu Sanlong Decoction enhances Th1 immune response through PD-1 signaling pathway and inhibits metastasis of lung cancer. Acta Univ Med Anhui (Chin) 2022;57:1718–1724.

    Google Scholar 

  40. Zhu YY, Song YL, Shi XL. Effect of Sijunzi Decoction on NK cells and colon cancer based on expression of PD-1/PD-L1. Chin J Immunol (Chin) 2021;37:295–300,306.

    Google Scholar 

  41. Guy C, Mitrea DM, Chou PC, et al. LAG3 associates with TCR-CD3 complexes and suppresses signaling by driving co-receptor-Lck dissociation. Nat Immunol 2022;23:757–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang Q, Chikina M, Szymczak-Workman AL, et al. LAG3 limits regulatory T cell proliferation and function in autoimmune diabetes. Sci Immunol 2017;2:eaah4569.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Li YX. The curative effect of Yiwei Xiaoai Decoction on gastric cancer of Spleen deficiency and phlegm stasis type and its influence on immune function and serum LAG-3 and DKK-1. Modern J Integr Tradit Chin West Med (Chin) 2020;29:962–967.

    Google Scholar 

  44. He X, Xu C. Immune checkpoint signaling and cancer immunotherapy. Cell Res 2020;30:660–669.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wolf Y, Anderson AC, Kuchroo VK. TIM3 comes of age as an inhibitory receptor. Nat Rev Immunol 2020;20:173–185.

    Article  CAS  PubMed  Google Scholar 

  46. Yang R, Sun L, Li CF, et al. Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nat Commun 2021;12:1–17.

    Google Scholar 

  47. Shi J, Liu Y. Study on the mechanism of Yiqi Tuomin Decoction regulating Th1/Th2 of allergic rhinitis by Tim3. Chin J Tradit Chin Med Pharm (Chin) 2018;33:2781–2785.

    CAS  Google Scholar 

  48. Gao WY, Jin ZL, Chen ML, et al. Study on the effect of ultrasonic atomization of Shengqi Zhuangyang Decoction on allergic rhinitis mice. Modern J Integr Tradit Chin West Med (Chin) 2021;30:1266–1270.

    Google Scholar 

  49. Meng P, Xiang Y, Lei C, et al. Study on intervention effect and mechanism of Zuogui Jiangtang Jieyu Formula on microglia activation in simulated diabetic depression. Chin J Modern Appl Pharm (Chin) 2022;39:2309–2315.

    Google Scholar 

  50. Zhang XX, Zhang YD, Pan L. Effects of Baduanjin combined with Bushen Huoxue Decoction on muscle function and inflammatory immunization indicators in patients with knee osteoarthritis. Clin J Tradit Chin Med (Chin) 2022;34:738–742.

    Google Scholar 

  51. Cai XZ, Huang WY, Qiao Y, et al. Downregulation of TIM-3 mRNA expression in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Braz J Med Biol Res 2014;48:77–82.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Guo L, Yang X, Xia Q, et al. Expression of human T cell immunoglobulin domain and mucin-3 (TIM-3) on kidney tissue from systemic lupus erythematosus patients. Clin Exp Med 2014;14:383–388.

    Article  CAS  PubMed  Google Scholar 

  53. Lin N, Huang XQ, Fan HM, et al. Effect of modified Qinghao Biejia Decoction on the expression IL-17 and Tim-3 in renal tissue for MRL/lpr mice. Sichuan J Tradit Chin Med 2019;37:60–63.

    Google Scholar 

  54. Rangachari M, Zhu C, Sakuishi K, et al. Bat3 promotes T cell responses and autoimmunity by repressing Tim-3-mediated cell death and exhaustion. Nat Med 2012;18:1394–1400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Diaz D, Chara L, Chevarria J, et al. Loss of surface antigens is a conserved feature of apoptotic lymphocytes from several mammalian species. Cell Immunol 2011;271:163–172.

    Article  CAS  PubMed  Google Scholar 

  56. Sadelain M, Brentjens R, Riviere I. The basic principles of chimeric antigen receptor design. Cancer Discov 2013;3:388–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hui C, Xiao L, Yinxu S, et al. Notch signaling pathway mediates the immunomodulatory mechanism of Yangfei Huoxue Decoction alleviating bleomycin-induced pulmonary fibrosis in rats. J Tradit Chin Med 2020;40:204–211.

    Google Scholar 

  58. Xu Y, Chen S, Zhang L, et al. The anti-inflammatory and anti-pruritus mechanisms of Huanglian Jiedu Decoction in the treatment of atopic dermatitis. Front Pharmacol 2021;12:735295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wen Q. Effect of moxibustion promoting on serum levels of IL-1β, IL-2 and stomach tissue in rats with stress induced gastric mucosal lesions after cutting off the vagus nerve [Dissertation]. Chagnsha: Hunan University of Chinese Medicine;2012.

    Google Scholar 

  60. Tan J. Effect of moxibustion-induced HSP70 on tumor growth and immune function in rats with gastric cancer [Dissertation]. Changsha: Hunan University of Chinese Medicine;2019.

    Google Scholar 

  61. Zhang SL, Wang SG, Liu ZP, et al. Research on the therapeutic effect of Sanshi Decoction combined with moxibustion at Guanyuan (BL 26) and millimeter wave technique in the treatment of advanced lung cancer. Chin Med Modern Dist Educ China (Chin) 2021;19:100–102.

    Google Scholar 

  62. Zhang GL, Cheng WD, Zhang WJ, et al. Effects of serums containing Buzhong Yiqi Decoction with Astragalus Radix or Hedysari Radix on anti-immunosenescence in spleen lymphocytes of SAMP8 mice. China J Chin Mater Med (Chin) 2016;41:2888–2894.

    Google Scholar 

  63. Yang SX, Li W, Sun MH, et al. Comparative study on effects of Yiqi Yangxue Decoction and Buzhong Yiqi Decoction containing serums with Radix Hedysari or Radix Astragali on immunologic function of SAMP8 mice splenic lymphocytes. Chin J Integr Tradit West Med (Chin) 2019;39:335–341.

    Google Scholar 

  64. Zeng J, Zhang X, Wang J, et al. Comparison of donepezil, memantine, melatonin, and Liuwei Dihuang Decoction on behavioral and immune endocrine responses of aged senescence-accelerated mouse resistant 1 mice. Front Pharmacol 2020;11:350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen LE, Zhan H. An update of the 4-1BB costimulatory signaling pathway. J Med Postgrad (Chin) 2010;23:650–653.

    CAS  Google Scholar 

  66. Duttagupta PA, Boesteanu AC, Katsikis PD. Costimulation signals for memory CD8+T cells during viral infections. Crit Rev Immunol 2009;29:469–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Menk AV, Scharping NE, Rivadeneira DB, et al. 4-1BB costimulation induces T cell mitochondrial function and biogenesis enabling cancer immunotherapeutic responses. J Exp Med 2018;215:1091–1100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim MK, Shin KJ, Bae S, et al. Tumor-mediated 4-1BB induces tumor proliferation and metastasis in the colorectal cancer cells. Life Sci 2022;307:120899.

    Article  CAS  PubMed  Google Scholar 

  69. Konstorum A, Vella AT, Adler AJ, et al. A mathematical model of combined CD8 T-cell costimulation by 4-1BB (CD137) and OX40 (CD134) receptors. Sci Rep 2019;9:1–12.

    Article  CAS  Google Scholar 

  70. He CM, Liu JX, Han H, et al. Effects and safety analysis of tripterygium glycosides on child patients with purpura nephritis. World Chin Med (Chin) 2020;20:3094–3096.

    Google Scholar 

  71. de Jong JMA, Larsson O, Cannon B, et al. A stringent validation of mouse adipose tissue identity markers. Am J Physiol Endocrinol Metab 2015;308:E1085–E1105.

    Article  PubMed  Google Scholar 

  72. Lu KY, Dass KTP, Lin SZ, et al. N-butylidenephthalide ameliorates high-fat diet-induced obesity in mice and promotes browning through adrenergic response/AMPK activation in mouse beige adipocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2021;1866:159033.

    Article  CAS  PubMed  Google Scholar 

  73. Salter AI, Ivey RG, Kennedy JJ, et al. Phosphoproteomic analysis of chimeric antigen receptor signaling reveals kinetic and quantitative differences that affect cell function. Sci Signal 2018;11:eaat6753.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Drent E, Poels R, Ruiter R, et al. Combined CD28 and 4-1BB costimulation potentiates affinity-tuned chimeric antigen receptor-engineered T cells dual costimulation empowers very low-affinity CAR-T cells. Clin Cancer Res 2019;25:4014–4025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Deng J, Zhao S, Zhang X, et al. OX40 (CD134) and OX40 ligand, important immune checkpoints in cancer. Onco Targets Ther 2019;12:7347–7353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nuebling T, Schumacher CE, Hofmann M, et al. The immune checkpoint modulator OX40 and its ligand OX40L in NK-cell immunosurveillance and acute myeloid leukemia. Cancer Immunol Res 2018;6:209–221.

    Article  CAS  PubMed  Google Scholar 

  77. Pollmann J, Götz JJ, Rupp D, et al. Hepatitis C virus-induced natural killer cell proliferation involves monocyte-derived cells and the OX40/OX40L axis. J Hepatol 2018;68:421–430.

    Article  CAS  PubMed  Google Scholar 

  78. Liu YZ, Yu JE, Xuan Z, et al. Effects of Pingchuan Formula and its disassembled formula on pDC/cDC imbalance in asthmatic mice. Chin J Tradit Chin Med Pharm (Chin) 2018;33:2349–2352.

    CAS  Google Scholar 

  79. Li KM, Tang HQ, Wang YK, et al. Effects of needle pricking therapy of Zhuang medicine on TSLP, OX40L and Th2-dominated differentiation immune response in mouse models of asthma. J Youjiang Med Univ Natl (Chin) 2017;39:176–178.

    Google Scholar 

  80. Zhang HY, Li Y, Yin HP, et al. Effect of Zishui Qinggan Yin in treatment of type 2 diabetes mellitus in positive co-stimulatory molecules ICOS/ICOSL and OX40/OX40L on immune regulation effect. Liaoning J Tradit Chin Med (Chin) 2019;46:1891–1895.

    CAS  Google Scholar 

  81. Zhang WW. Clinical effect of Liangxue Sanxue Prescription combined with prednisone acetate tablets in treatment of idiopathic thrombocytopenic purpura: an analysis of 35 cases. Hunan J Tradit Chin Med (Chin) 2021;37:8–11.

    Google Scholar 

  82. Tong XL, Fang M, Gao H, et al. Major scientific and engineering technical problems of traditional Chinese medicine in 2021. J Tradit Chin Med (Chin) 2021;62:921–929.

    Google Scholar 

  83. China Association of Chinese Medicine. Major scientific problems, engineering technical problems and industrial technical problems of traditional Chinese medicine in 2022. J Tradit Chin Med (Chin) 2022;63:1301–1312.

    Google Scholar 

  84. Han LW, Guo DA, Liu JY, et al. Major scientific and engineering technical problems of traditional Chinese medicine in 2020. J Tradit Chin Med (Chin) 2020;61:1671–1678.

    Google Scholar 

  85. Wang D, Qu M. Homeostasis research model based on yin-yang theory: five examples. Chin J Integr Med 2021;27:403–407.

    Article  PubMed  Google Scholar 

  86. Li Y, Li ZX, Xie CY, et al. Gegen Qinlian Decoction enhances immunity and protects intestinal barrier function in colorectal cancer patients via gut microbiota. World J Gastroenterol 2020;26:7633–7651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang D, Gong L, Li Z, et al. Antifibrotic effect of Gancao Ganjiang Decoction is mediated by PD1/TGF-β1/IL-17A pathway in bleomycin induced idiopathic pulmonary fibrosis. J Ethnopharmacol 2021;281:114522.

    Article  CAS  PubMed  Google Scholar 

  88. Li L, Yan J, Ma L, et al. Effects of Maxing Loushi Decoction on immune inflammation and programmed death markers in mice with chronic obstructive pulmonary disease. World J Emerg Med 2022;13:32–37.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Xu RH, Wu J, Zhang XX, et al. Modified Buzhong Yiqi Decoction synergies with 5 fluorouracile to inhibits gastric cancer progress via PD-1/PD-L1 dependent T cell immunization. Pharmacol Res 2020;152:104623.

    Article  CAS  PubMed  Google Scholar 

  90. Xue N, Fu X, Zhu Y, et al. Moxibustion enhances chemotherapy of breast cancer by affecting tumor microenvironment. Cancer Manag Res 2020;12:8015–8022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chen L, Li L, Zou S, et al. Tongfu Lifei Decoction attenuates immunosuppression to protect the intestinal-mucosal barrier in sepsis by inhibiting the PD-1/PD-L1 signaling pathway. Mol Med Rep 2021;24:1–10.

    Article  Google Scholar 

  92. Chen H, Chen JH, Shen XB, et al. Effect of Shegan Mahuang Decoction on pulmonary inflammatory response and immune response in rats with asthmatic pneumonia. J Guangzhou Univ Tradit Chin Med (Chin) 2020;37:317–323.

    Google Scholar 

  93. Chen FS, Hu C. Effects of Liujunzi Decoction on motilin and CD8+CD28+ killer T cells in diabetic gastroparesis of Spleen deficiency and phlegm dampness type. Chin J Misdiagn (Chin) 2020;15:249–251.

    Google Scholar 

  94. Cai JL, Zhu YL, Li XP, et al. Mechanism of Huangjing Qianshi Decoction in treatment of prediabetic mice based on transcriptome sequencing. China J Chin Mater Med (Chin) 2023;48:1032–1042.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Xiong LJ was mainly responsible for the writing of manuscripts. Tian YF was responsible for the design of the thesis framework. Zhai CT and Li W guided the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Yue-feng Tian.

Ethics declarations

The authors declare that they have no conflicts of interest regarding the publication of this paper.

Additional information

Supported by the National Natural Science Foundation of China (Nos. 82174504 and 81674062) and the Innovation Fund of Postgraduate, Hunan University of Chinese Medicine (No. 2022CX20)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Lj., Tian, Yf., Zhai, Ct. et al. Application and Effectiveness of Chinese Medicine in Regulating Immune Checkpoint Pathways. Chin. J. Integr. Med. 29, 1045–1056 (2023). https://doi.org/10.1007/s11655-023-3743-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-023-3743-8

Keywords

Navigation