Skip to main content
Log in

Ethyl Lithospermate Reduces Lipopolysaccharide-Induced Inflammation through Inhibiting NF-κB and STAT3 Pathways in RAW 264.7 Cells and Zebrafish

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To explore the anti-inflammatory effects of ethyl lithospermate in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine-derived macrophages and zebrafish, and its underlying mechanisms.

Methods

3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide (MTT) assays were performed to investigate the toxicity of ethyl lithospermate at different concentrations (12.5–100 µ mol/L) in RAW 264.7 cells. The cells were stimulated with LPS (100 ng/mL) for 12 h to establish an inflammation model in vitro, the production of pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor α (TNF-α) were assessed by enzyme linked immunosorbent assay (ELISA). Western blot was used to ascertain the protein expressions of signal transducer and activator of transcription 3 (STAT3), nuclear factor kappa B (NF-κB) p65, phospho-STAT3 (p-STAT3, Tyr705), inhibitor of NF-κB (IκB) α, and phospho-I κB α (p-IκB α, Ser32), and confocal imaging was used to identify the nuclear translocation of NF-κB p65 and p-STAT3 (Tyr705). Additionally, the yolk sacs of zebrafish (3 days post fertilization) were injected with 2 nL LPS (0.5 mg/mL) to induce an inflammation model in vivo. Survival analysis, hematoxylin-eosin (HE) staining, observation of neutrophil migration, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to further study the anti-inflammatory effects of ethyl lithospermate and its probable mechanisms in vivo.

Results

The non-toxic concentrations of ethyl lithospermate have been found to range from 12.5 to 100 µ mol/L. Ethyl lithospermate inhibited the release of IL-6 and TNF-α(P<0.05 or P<0.01), decreased IκBα degradation and phosphorylation (P<0.05) as well as the nuclear translocation of NF-κB p65 and p-STAT3 (Tyr705) in LPS-induced RAW 264.7 cells (P<0.01). Ethyl lithospermate also decreased inflammatory cells infiltration and neutrophil migration while increasing the survival rate of LPS-stimulated zebrafish (P<0.05 or P<0.01). In addition, ethyl lithospermate also inhibited the mRNA expression levels of of IL-6, TNF-α, IκBα, STAT3, and NF-κB in LPS-stimulated zebrafish (P<0.01).

Conclusion

Ethyl lithospermate exerts anti-Inflammatory effected by inhibiting the NF-κB and STAT3 signal pathways in RAW 264.7 macrophages and zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Materials

Data will be made available on request.

References

  1. Medzhitov R. The spectrum of inflammatory responses. Science 2021;374:1070–1075.

    Article  CAS  PubMed  Google Scholar 

  2. Zhu Y, Xian X, Wang Z, Bi Y, Chen Q, Han X, et al. Research progress on the relationship between atherosclerosis and inflammation. Biomolecules 2018;8:80–91.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Khandia R, Munjal A. Interplay between inflammation and cancer. Adv Protein Chem Struct Biol 2020;119:199–245.

    Article  CAS  PubMed  Google Scholar 

  4. Henein MY, Vancheri S, Longo G, Vancheri F. The role of inflammation in cardiovascular disease. Int J Mol Sci 2022;23:12906.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ozben T, Ozben S. Neuro-inflammation and antiinflammatory treatment options for Alzheimer’s disease. Clin Biochem 2019;72:87–89.

    Article  CAS  PubMed  Google Scholar 

  6. Calsolaro V, Edison P. Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimers Dement 2016;12:719–732.

    Article  PubMed  Google Scholar 

  7. Lambertsen KL, Finsen B, Clausen BH. Post-stroke inflammation-target or tool for therapy? Acta Neuropathol 2019;137:693–714.

    Article  PubMed  Google Scholar 

  8. Ren J, Fu L, Nile SH, Zhang J, Kai G. Salvia miltiorrhiza in treating cardiovascular diseases: a review on its pharmacological and clinical applications. Clin Ther 2019;10:753.

    CAS  Google Scholar 

  9. Arulselvan P, Fard MT, Tan WS, Gothai S, Fakurazi S, Norhaizan ME, et al. Role of antioxidants and natural products in inflammation. Oxid Med Cell Longev 2016;2016:1–15.

    Article  Google Scholar 

  10. Meim XD, Cao YF, Che YY, Li J, Shang ZP, Zhao WJ, et al. Danshen: a phytochemical and pharmacological overview. Front Pharmacol 2019;17:59–80.

    Google Scholar 

  11. Li ZM, Xu SW, Liu PQ. Salvia miltiorrhiza Burge (Danshen): a golden herbal medicine in cardiovascular therapeutics. Acta Pharmacol Sin 2018;39:802–824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ye T, Xiong D, Chen L, Li Y, Gong S, Zhang L, et al. Effect of Danshen on TLR2-triggered inflammation in macrophages. Phytomedicine 2020;70:153228.

    Article  CAS  PubMed  Google Scholar 

  13. Wang W, Li SS, Xu XF, Yang C, Niu XG, Yin SX, et al. Danshensu alleviates pseudo-typed SARS-CoV-2 induced mouse acute lung inflammation. Acta Pharmacol Sin 2022;43:771–780.

    Article  CAS  PubMed  Google Scholar 

  14. Min X, Zeng X, Zhao W, Han Z, Wang Y, Han Y, et al. Cryptotanshinone protects dextran sulfate sodium-induced experimental ulcerative colitis in mice by inhibiting intestinal inflammation. Phytother Res 2020;34:2639–2648.

    Article  CAS  PubMed  Google Scholar 

  15. Xia ZB, Yuan YJ, Zhang QH, Li H, Dai JL, Min JK. Salvianolic acid B suppresses inflammatory mediator levels by downregulating NF-kappa B in a rat model of rheumatoid arthritis. Med Sci Monit 2018;24:2524–2532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu L, Shen P, Bi Y, Chen J, Xiao Z, Zhang X, et al. Danshen Injection ameliorates STZ-induced diabetic nephropathy in association with suppression of oxidative stress, pro-inflammatory factors and fibrosis. Int Immunopharmacol 2016;38:385–394.

    Article  CAS  PubMed  Google Scholar 

  17. Ding B, Lin C, Liu Q, He Y, Ruganzu JB, Jin H, et al. Tanshinone II A attenuates neuroinflammation via inhibiting RAGE/NF-kappa B signaling pathway in vivo and in vitro. J Neuroinflammation 2020;17:302.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang Y, Feng X, Du M, Ding J, Liu P. Salvianolic acid B attenuates the inflammatory response in atherosclerosis by regulating MAPKs/NF-kappaB signaling pathways in LDLR-/- mice and RAW264.7 cells. Int J Immunopathol Pharmacol 2022;36:3946320221079468.

    Article  CAS  PubMed  Google Scholar 

  19. Li NP, Liu JS, Liu JW, Tian HY, Zhou HL, Zheng YR, et al. Monoterpenoid indole alkaloids from the fruits of Gelsemium elegans and their anti-inflammatory activities. Bioorganic Chem 2021;107:104624.

    Article  CAS  Google Scholar 

  20. He LJ, Liu JS, Luo D, Zheng YR, Zhang YB, Wang GC, et al. Quinolizidine alkaloids from Sophora tonkinensis and their anti-inflammatory activities. Fitoterapia 2019;139:104391.

    Article  CAS  PubMed  Google Scholar 

  21. Ryu SJ, Choi HS, Yoon KY, Lee OH, Kim KJ, Lee BY. Oleuropein suppresses LPS-induced inflammatory responses in RAW 264.7 cell and zebrafish. J Agric Food Chem 2015;63:2098–2105.

    Article  CAS  PubMed  Google Scholar 

  22. Zhou H, Cao H, Zheng Y, Lu Z, Chen Y, Liu D, et al. Liang-Ge-San, a classic traditional Chinese medicine formula, attenuates acute inflammation in zebrafish and RAW 264.7 cells. J Ethnopharmacol 2020;249:112427.

    Article  CAS  PubMed  Google Scholar 

  23. Xie Y, Meijer AH, Schaaf MJM. Modeling inflammation in zebrafish for the development of anti-inflammatory drugs. Front Cell Dev Biol 2020;8:620984.

    Article  PubMed  Google Scholar 

  24. Zhang Y, Takagi N, Yuan B, Zhou Y, Si N, Wang H, et al. The protection of indolealkylamines from LPS-induced inflammation in zebrafish. J Ethnopharmacol 2019;243:112122.

    Article  CAS  PubMed  Google Scholar 

  25. Sulukan E, Ghosigharehagaji A, Baran A, Yildirim S, Bolat I, Ceyhun SB. A versatile toxicity evaluation of ethyl carbamate (urethane) on zebrafish embryos: morphological, physiological, histopathological, immunohistochemical, transcriptional and behavioral approaches. Toxicol Lett 2021;353:71–78.

    Article  CAS  PubMed  Google Scholar 

  26. Lu Z, Cao H, Liu D, Zheng Y, Tian C, Liu S, et al. Optimal combination of anti-inflammatory components from Chinese medicinal formula Liang-Ge-San. J Ethnopharmacol 2021;269:113747.

    Article  CAS  PubMed  Google Scholar 

  27. Wang X, Guo D, Li W, Zhang Q, Jiang Y, Wang Q, et al. Danshen (Salvia miltiorrhiza) restricts MD2/TLR4-MyD88 complex formation and signalling in acute myocardial infarction-induced heart failure. J Cell Mol Med 2020;24:10677–10692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Song Z, Feng J, Zhang Q, Deng S, Yu D, Zhang Y, et al. Tanshinone II A protects against cerebral ischemia reperfusion injury by regulating microglial activation and polarization via NF-κB pathway. Front Pharmacol 2021;12:641848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Frangogiannis NG. The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol 2014;11:255–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wolf D, Ley K. Immunity and inflammation in atherosclerosis. Circ Res 2019;124:315–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Goswami SK, Ranjan P, Dutta RK, Verma SK. Management of inflammation in cardiovascular diseases. Pharmacol Res 2021;173:105912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Verma SK, Krishnamurthy P, Barefield D, Singh N, Gupta R, Lambers E, et al. Interleukin-10 treatment attenuates pressure overload-induced hypertrophic remodeling and improves heart function via signal transducers and activators of transcription 3-dependent inhibition of nuclear factor-κB. Circulation 2012;126:418–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liberale L, Ministrini S, Carbone F, Camici GG, Montecucco F. Cytokines as therapeutic targets for cardio - and cerebrovascular diseases. Basic Res Cardiol 2021;116:23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Frangogiannis NG. Regulation of the inflammatory response in cardiac repair. Circ Res 2012;110:159–173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lei W, Li X, Li L, Huang M, Cao Y, Sun X, et al. Compound Danshen Dripping Pill ameliorates post ischemic myocardial inflammation through synergistically regulating MAPK, PI3K/AKT and PPAR signaling pathways. J Ethnopharmacol 2021;281:114438.

    Article  CAS  PubMed  Google Scholar 

  36. Giridharan S, Srinivasan M. Mechanisms of NF-κB p65 and strategies for therapeutic manipulation. J Inflamm Res 2018;11:407–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu H, Liu H, Zhao X, Zheng Y, Liu B, Zhang L, et al. IKIP negatively regulates NF-κB activation and inflammation through inhibition of IKKα/β phosphorylation. J Immunol 2020;204:418–427.

    Article  CAS  PubMed  Google Scholar 

  38. Sun SC. The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol 2017;17:545–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu H, Ma S, Xia H, Lou H, Zhu F, Sun L. Anti-inflammatory activities and potential mechanisms of phenolic acids isolated from Salvia miltiorrhiza f. alba roots in THP-1 macrophages. J Ethnopharmacol 2018;222:201–207.

    Article  CAS  PubMed  Google Scholar 

  40. Yang J, Liao X, Agarwal MK, Barnes L, Auron PE, Stark GR. Unphosphorylated STAT3 accumulates in response to IL-6 and activates transcription by binding to NF kappa B. Genes Dev 2007;21:1396–1408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hoesel B, Schmid JA. The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer 2013;12:86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. MacRae CA, Peterson RT. Zebrafish as tools for drug discovery. Nat Rev Drug Discov 2015;14:721–731.

    Article  CAS  PubMed  Google Scholar 

  43. Liew PX, Kubes P. The neutrophil’s role during health and disease. Physiol Rev 2019;99:1223–1248.

    Article  CAS  PubMed  Google Scholar 

  44. Castanheira FVS, Kubes P. Neutrophils and NETs in modulating acute and chronic inflammation. Blood 2019;133:2178–2185.

    Article  CAS  PubMed  Google Scholar 

  45. Hidalgo A, Libby P, Soehnlein O, Aramburu IV, Papayannopoulos V, Silvestre Roig C. Neutrophil extracellular traps: from physiology to pathology. Cardiovasc Res 2022;118:2737–2753.

    Article  CAS  PubMed  Google Scholar 

  46. Mortaz E, Alipoor SD, Adcock IM, Mumby S, Koenderman L. Update on neutrophil function in severe inflammation. Front Immunol 2018;9:2171.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zheng Y, Liu S, Fan C, Zeng H, Huang H, Tian C, et al. Holistic quality evaluation of Qingwen Baidu Decoction and its anti-inflammatory effects. J Ethnopharmacol 2020;263:113145.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Zhou CH and Yang H performed the experiments and wrote the manuscript. Zhou CH and Zou LF analyzed data in this study. Liu DF and Zou LF assisted in many experiments. Yu LZ, Cao HH, and Deng LE contributed to the reagents. Wang ZW, Lu ZB and Liu JS designed the idea and supervised this study. All authors participated in this work and agreed to publish this manuscript.

Corresponding author

Correspondence to Jun-shan Liu.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Supported by Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (No. GDHVPS2018) and Young Elite Scientists Sponsorship Program by the China Association of Chinese Medicine (No. 2019-QNRC2-C14)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Ch., Yang, H., Zou, Lf. et al. Ethyl Lithospermate Reduces Lipopolysaccharide-Induced Inflammation through Inhibiting NF-κB and STAT3 Pathways in RAW 264.7 Cells and Zebrafish. Chin. J. Integr. Med. 29, 1111–1120 (2023). https://doi.org/10.1007/s11655-023-3643-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-023-3643-y

Keywords

Navigation