Skip to main content

Advertisement

Log in

Huoxin Pill Reduces Myocardial Ischemia Reperfusion Injury in Rats via TLR4/NFκB/NLRP3 Signaling Pathway

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To explore the protective effect of Huoxin Pill (HXP) on acute myocardial ischemia-reperfusion (MIRI) injury in rats.

Methods

Seventy-five adult SD rats were divided into the sham-operated group, model group, positive drug group (diltiazem hydrochloride, DH), high dose group (24 mg/kg, HXP-H) and low dose group (12 mg/kg, HXP-L) of Huoxin Pill (n=15 for every group) according to the complete randomization method. After 1 week of intragastric administration, the left anterior descending coronary artery of the rat’s heart was ligated for 45 min and reperfused for 3 h. Serum was separated and the levels of creatine kinase (CK), creatine kinase isoenzyme (CK-MB) and lactate dehydrogenase (LDH), superoxide dismutase (SOD), and malondialdehyde (MDA), hypersensitive C-reactive protein (hs-CRP) and interleukin-1β (IL-1β) were measured. Myocardial ischemia rate, myocardial infarction rate and myocardial no-reflow rate were determined by staining with Evans blue and 2,3,5-triphenyltetrazolium chloride (TTC). Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine (BATMAN) databases were used to screen for possible active compounds of HXP and their potential therapeutic targets; the results of anti-inflammatory genes associated with MIRI were obtained from GeneCards, Drugbank, Online Mendelian Inheritance in Man (OMIM), and Therapeutic Target Datebase (TTD) databases was performed; Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were used to analyze the intersected targets; molecular docking was performed using AutoDock Tools. Western blot was used to detect the protein expression of Toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NFκB)/NOD-like receptor protein 3 (NLRP3).

Results

Compared with the model group, all doses of HXP significantly reduced the levels of LDH, CK and CK-MB (P<0.05, P<0.01); HXP significantly increased serum activity of SOD (P<0.05, P<0.01); all doses of HXP significantly reduced the levels of hs-CRP and IL-1β (P<0.05, P<0.01) and the myocardial infarction rate and myocardial no-reflow rate (P<0.01). GO enrichment analysis mainly involved positive regulation of gene expression, extracellular space and identical protein binding, KEGG pathway enrichment mainly involved PI3K-Akt signaling pathway and lipid and atherosclerosis. Molecular docking results showed that kaempferol and luteolin had a better affinity with TLR4, NFκB and NLRP3 molecules. The protein expressions of TLR4, NFκB and NLRP3 were reduced in the HXP group (P<0.01).

Conclusions

HXP has a significant protective effect on myocardial ischemia-reperfusion injury in rats, and its effect may be related to the inhibition of redox response and reduction of the inflammatory response by inhibiting the TLR4NFκB/NLRP3 signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zheng J, Chen P, Zhong J, Cheng Y, Chen H, He Y, et al. HIF-1α in myocardial ischemia-reperfusion injury (Review). Mol Med Rep 2021;23:352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bai J, Wang X, Du S, Wang P, Wang Y, Quan L, et al. Study on the protective effects of danshen-honghua herb pair (DHHP) on myocardial ischaemia/reperfusion injury (MIRI) and potential mechanisms based on apoptosis and mitochondria. Pharm Biol 2021;59:335–346.

    Article  PubMed  Google Scholar 

  3. Liu T, Howarth AG, Chen Y, Nair AR, Yang HJ, Ren D, et al. Intramyocardial hemorrhage and the “Wave Front” of reperfusion injury compromising myocardial salvage. J Am Coll Cardiol 2022;79:35–48.

    Article  PubMed  Google Scholar 

  4. Berry C, Ibáñez B. Intramyocardial hemorrhage: the final frontier for preventing heart failure post-myocardial infarction. J Am Coll Cardiol 2022;79:49–51.

    Article  PubMed  Google Scholar 

  5. Liu Y, Zhang J, Zhang D, Yu P, Zhang J, Yu S. Research progress on the role of pyroptosis in myocardial ischemia-reperfusion injury. Cells 2022;11:3271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chan SF, Vora K, Dharmakumar R. Chronic heart failure following hemorrhagic myocardial infarction: mechanism, treatment and outlook. Cell Stress 2023;7:7–11.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Raleigh JV, Mauro AG, Devarakonda T, Marchetti C, He J, Kim E, et al. Reperfusion therapy with recombinant human relaxin-2 (Serelaxin) attenuates myocardial infarct size and NLRP3 inflammasome following ischemia/reperfusion injury via eNOS-dependent mechanism. Cardiovasc Res 2017;113:609–619.

    CAS  Google Scholar 

  8. Akila P, Asaikumar L, Vennila L. Chlorogenic acid ameliorates isoproterenol-induced myocardial injury in rats by stabilizing mitochondrial and lysosomal enzymes. Biomed Pharmacother 2017;85:582–591.

    Article  CAS  PubMed  Google Scholar 

  9. Li P, Song Q, Liu T, Wu Z, Chu X, Zhang X, et al. Inhibitory effect of cinobufagin on L-type Ca2+ currents, contractility, and Ca2+ homeostasis of isolated adult rat ventricular myocytes. Sci World J 2014;2014:496705.

    Google Scholar 

  10. Rani S, Sreenivasaiah PK, Kim JO, Lee MY, Kang WS, Kim YS, et al. Tauroursodeoxycholic acid (TUDCA) attenuates pressure overload-induced cardiac remodeling by reducing endoplasmic reticulum stress. PLoS One 2017;12:e0176071.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Xuan JW, Huang M, Lu YJ, Tao LB. Economic evaluation of Safflower Yellow Injection for the treatment of patients with stable angina pectoris in China: a cost-effectiveness analysis. J Altern Complement Med 2018;24:564–569.

    Article  PubMed  Google Scholar 

  12. Fravel MA, Ernst M. Drug interactions with antihyper tensives. Curr Hypertens Rep 2021;23:14.

    Article  CAS  PubMed  Google Scholar 

  13. Kandaswamy E, Zuo L. Recent advances in treatment of coronary artery disease: role of science and technology. Int J Mol Sci 2018;19:424.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang X, Li B, Hu Y, Xiao S, Guo M, Xu T, et al. Novel grading system for ischemia–reperfusion injury manifestations in patients with acute ST-segment elevation myocardial infarction undergoing percutaneous coronary intervention. Sci Rep 2022;12:19349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang A, Li Y, Wang Z, Xin G, You Y, Sun M, et al. Proteomic analysis revealed the pharmacological mechanism of Xueshuantong injection in preventing early acute myocardial infarction injury. Front Pharmacol 2022;13:1010079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dong L, Shen Z, Chi H, Wang Y, Shi Z, Fang H, et al. Research progress of chinese medicine in the treatment of myocardial ischemia-reperfusion injury. Am J Chin Med 2023;51:1–17.

    Article  CAS  PubMed  Google Scholar 

  17. Heusch G. Myocardial stunning and hibernation revisited. Nat Rev Cardiol 2021;18:522–536.

    Article  PubMed  Google Scholar 

  18. Medina de Chazal H, Del Buono MG, Keyser-Marcus L, Ma L, Moeller FG, Berrocal D, et al. Stress cardiomyopathy diagnosis and treatment: JACC state-of-the-art review. J Am Coll Cardiol 2018;72:1955–1971.

    Article  PubMed  Google Scholar 

  19. de Jong RCM, Pluijmert NJ, de Vries MR, Pettersson K, Atsma DE, Jukema JW, et al. Annexin A5 reduces infarct size and improves cardiac function after myocardial ischemia-reperfusion injury by suppression of the cardiac inflammatory response. Sci Rep 2018;8:6753.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jo W, Kang KK, Chae S, Son WC. Metformin alleviates left ventricular diastolic dysfunction in a rat myocardial ischemia reperfusion injury model. Int J Mol Sci 2020;21:1489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Marek-Iannucci S, Thomas A, Hou J, Crupi A, Sin J, Taylor DJ, et al. Myocardial hypothermia increases autophagic flux, mitochondrial mass and myocardial function after ischemia-reperfusion injury. Sci Rep 2019;9:10001.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wu J, Cai W, Du R, Li H, Wang B, Zhou Y, et al. Sevoflurane alleviates myocardial ischemia reperfusion injury by inhibiting P2X7-NLRP3 mediated pyroptosis. Front Mol Biosci 2021;8:768594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ma L, Liu X, Zhang M, Zhou L, Jiang L, Gao L, et al. Paeoniflorin alleviates ischemia/reperfusion induced acute kidney injury by inhibiting Slc7a11-mediated ferroptosis. Int Immunopharmacol 2023;116:109754.

    Article  CAS  PubMed  Google Scholar 

  24. Kook H, Hong SJ, Yang KS, Lee S, Kim JS, Park CG. Comparison of nebivolol versus diltiazem in improving coronary artery spasm and quality of life in patients with hypertension and vasospastic angina: a prospective, randomized, double-blind pilot study. PLoS One 2020;15:e0239039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rossi N, Allen B, Hailu K, Kamataris K, Ryan C. Impact of intravenous calcium with diltiazem for atrial fibrillation/flutter in the emergency department. Am J Emerg Med 2023;64:57–61.

    Article  PubMed  Google Scholar 

  26. Lan Q, Wu F, Han B, Ma L, Han J, Yao Y. Intravenous diltiazem versus metoprolol for atrial fibrillation with rapid ventricular rate: A meta-analysis. Am J Emerg Med 2022;51:248–256.

    Article  PubMed  Google Scholar 

  27. Xiao SQ, Ibarra F Jr., Cruz M. Intravenous metoprolol versus diltiazem for rate control in atrial fibrillation. Ann Pharmacother 2022;56:916–921.

    Article  CAS  PubMed  Google Scholar 

  28. Hirschy R, Ackerbauer KA, Peksa GD, O’Donnell EP, DeMott JM. Metoprolol vs. diltiazem in the acute management of atrial fibrillation in patients with heart failure with reduced ejection fraction. Am J Emerg Med 2019;37:80–84.

    Article  PubMed  Google Scholar 

  29. Toldo S, Mauro AG, Cutter Z, Abbate A. Inflammasome, pyroptosis, and cytokines in myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2018;315:H1553–H1568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. He L, Chu Y, Yang J, He J, Hua Y, Chen Y, et al. Activation of autophagic flux maintains mitochondrial homeostasis during cardiac ischemia/reperfusion injury. Cells 2022;11:2111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zeng X, Zhang YD, Ma RY, Chen YJ, Xiang XM, Hou DY, et al. Activated Drp1 regulates p62-mediated autophagic flux and aggravates inflammation in cerebral ischemia-reperfusion via the ROS-RIP1/RIP3-exosome axis. Mil Med Res 2022;9:668–685.

    Google Scholar 

  32. Liao X, Song X, Li J, Li L, Fan X, Qin Q, et al. An injectable co-assembled hydrogel blocks reactive oxygen species and inflammation cycle resisting myocardial ischemia-reperfusion injury. Acta Biomater 2022;149:82–95.

    Article  CAS  PubMed  Google Scholar 

  33. Li W, Li W, Leng Y, Xiong Y, Xia Z. Ferroptosis is involved in diabetes myocardial ischemia/reperfusion injury through endoplasmic reticulum stress. DNA Cell Biol 2020;39:210–225.

    Article  CAS  PubMed  Google Scholar 

  34. Fang HC, Wu BQ, Hao YL, Luo Y, Zhao HL, Zhang WY, et al. KRT1 gene silencing ameliorates myocardial ischemia-reperfusion injury via the activation of the Notch signaling pathway in mouse models. J Cell Physiol 2019;234:3634–3646.

    Article  CAS  PubMed  Google Scholar 

  35. Kim EN, Kim CJ, Kim SR, Song JA, Choe H, Kim KB, et al. High serum CRP influences myocardial miRNA profiles in ischemia—reperfusion injury of rat heart. PLoS One 2019;14:e0216610.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Baldeo C, Seegobin K, Yaranov D, Rollini F. “Malignant” right coronary artery presenting as an ST-segment elevation myocardial infarction—a case report. J Geriatr Cardiol 2018;15:467–468.

    PubMed  PubMed Central  Google Scholar 

  37. Lv Z, Wang F, Zhang X, Zhang X, Zhang J, Liu R. Etomidate attenuates the ferroptosis in myocardial ischemia/reperfusion rat model via Nrf2/HO-1 Pathway. Shock 2021;56:440–449.

    Article  CAS  PubMed  Google Scholar 

  38. Qin X, Qin H, Li Z, Xue S, Huang B, Liu X, et al. Luteolin alleviates ischemia/reperfusion injury-induced no-reflow by regulating Wnt/β-catenin signaling in rats. Microvasc Res 2022;139:104266.

    Article  CAS  PubMed  Google Scholar 

  39. Hale SL, Kloner RA. Dabigatran treatment: effects on infarct size and the no-reflow phenomenon in a model of acute myocardial ischemia/reperfusion. J Thromb Thrombolysis 2015;39:50–54.

    Article  CAS  PubMed  Google Scholar 

  40. Kloner RA, King KS, Harrington MG. No-reflow phenomenon in the heart and brain. Am J Physiol Heart Circ Physiol 2018;315:H550–H562.

    Article  CAS  PubMed  Google Scholar 

  41. Medina-Leyte DJ, Zepeda-García O, Domínguez-Pérez M, González-Garrido A, Villarreal-Molina T, Jacobo-Albavera L. Endothelial dysfunction, inflammation and coronary artery disease: potential biomarkers and promising therapeutical approaches. Int J Mol Sci 2021;22:3850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shen YM, Liu XJ, Shi JH, Wu X. Involvement of Nrf2 in myocardial ischemia and reperfusion injury. Int J Biol Macromol 2019;125:496–502.

    Article  CAS  PubMed  Google Scholar 

  43. Rocha DM, Caldas AP, Oliveira LL, Bressan J, Hermsdorff HH. Saturated fatty acids trigger TLR4-mediated inflammatory response. Atherosclerosis 2016;244:211–215.

    Article  CAS  PubMed  Google Scholar 

  44. Qiu Z, Lei S, Zhao B, Wu Y, Su W, Liu M, et al. NLRP3 Inflammasome activation-mediated pyroptosis aggravates myocardial ischemia/reperfusion injury in diabetic rats. Oxid Med Cell Longev 2017;2017:9743280.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Aghamohammad S, Sepehr A, Miri ST, Najafi S, Rohani M, Pourshafiea MR. The effects of the probiotic cocktail on modulation of the NF-kB and JAK/STAT signaling pathways involved in the inflammatory response in bowel disease model. BMC Immunol 2022;23:8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Liu JX and Li L conceived and designed the experiments. Cao C wrote the article. Qi YT, Meng HX and Wang AA performed the experiments. Wang ZY and Liu ZX were in charge of the collection of references. All authors agreed to be responsible for the content of the work. All authors agreed to the publication of this article.

Corresponding author

Correspondence to Jian-xun Liu.

Ethics declarations

There is no potential conflict of interest among authors.

Additional information

Supported by the National Natural Science Foundation of China (No. 82174015 and No. 82030124), Scientific and Technological Innovation Project of China Academy of Chinese Medical Sciences (No. CI2021A04609)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, C., Qi, Yt., Wang, Aa. et al. Huoxin Pill Reduces Myocardial Ischemia Reperfusion Injury in Rats via TLR4/NFκB/NLRP3 Signaling Pathway. Chin. J. Integr. Med. 29, 1066–1076 (2023). https://doi.org/10.1007/s11655-023-3640-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-023-3640-1

Keywords

Navigation