Skip to main content

Advertisement

Log in

Methamphetamine: Mechanism of Action and Chinese Herbal Medicine Treatment for Its Addiction

  • Review
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

With the proliferation of synthetic drugs, research on the mechanism of action of addictive drugs and treatment methods is of great significance. Among them, methamphetamine (METH) is the most representative amphetamine synthetic drug, and the treatment of METH addiction has become an urgent medical and social problem. In recent years, the therapeutic effects of Chinese herbal medicines on METH addiction have gained widespread attention because of their non-addictiveness, multiple targets, low side effects, low cost, and other characteristics. Previous studies have identified a variety of Chinese herbal medicines with effects on METH addiction. Based on the research on METH in recent years, this article summarizes the mechanism of action of METH as the starting point and briefly reviews the Chinese herbal medicine-based treatment of METH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang H, Dong X, Awan MUN, et al. Epigenetic mechanisms involved in methamphetamine addiction. Front Pharm 2022;13:984997.

    Article  CAS  Google Scholar 

  2. Blackard JT, Sherman KE. Drugs of abuse and their impact on viral pathogenesis. Viruses 2021;13:2387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. World Drug Report 2021. https://www.unodc.org/unodc/en/data-and-analysis/wdr2021.html

  4. Rawson RA, Condon TP. Why do we need an addiction supplement focused on methamphetamine? Addiction (Abingdon, England) 2007;102 Suppl 1:1–4.

    Article  PubMed  Google Scholar 

  5. Courtney KE, Ray LA. Methamphetamine: an update on epidemiology, pharmacology, clinical phenomenology, and treatment literature. Drug Alcohol Depend 2014;143:11–21.

    Article  CAS  PubMed  Google Scholar 

  6. Potvin S, Pelletier J, Grot S, et al. Cognitive deficits in individuals with methamphetamine use disorder: a metaanalysis. Addict Behav 2018;80:154–160.

    Article  PubMed  Google Scholar 

  7. Hsieh JH, Stein DJ, Howells F M. The neurobiology of methamphetamine induced psychosis. Front Human Neurosci 2014;8:537.

    Article  Google Scholar 

  8. Du J, Quan M, Zhuang W, et al. Hippocampal volume reduction in female but not male recent abstinent methamphetamine users. Behav Brain Res 2015;289:78–83.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mu LL, Wang Y, Wang LJ, et al. Associations of executive function and age of first use of methamphetamine with methamphetamine relapse. Front Psych 2022;13:971825.

    Article  Google Scholar 

  10. Arias-Carrión O, Stamelou M, Murillo-Rodríguez E, et al. Dopaminergic reward system: a short integrative review. Int Arch Med 2010;3:24.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Homer BD, Solomon TM, Moeller RW, et al. Methamphetamine abuse and impairment of social functioning: a review of the underlying neurophysiological causes and behavioral implications. Psychol Bull 2008;134:301–310.

    Article  PubMed  Google Scholar 

  12. Panenka WJ, Procyshyn RM, Lecomte T, et al. Methamphetamine use: a comprehensive review of molecular, preclinical and clinical findings. Drug Alcohol Depend 2013;129:167–179.

    Article  CAS  PubMed  Google Scholar 

  13. Miller DR, Bu M, Gopinath A, et al. Methamphetamine dysregulation of the central nervous dystem and peripheral immunity. J Pharmacol Exp Ther 2021;379:372–385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cruickshank CC, Dyer KR. A review of the clinical pharmacology of methamphetamine. Addiction (Abingdon, England) 2009;104:1085–1099.

    Article  PubMed  Google Scholar 

  15. Pimentel E, Sivalingam K, Doke M, et al. Effects of drugs of abuse on the blood-brain barrier: a brief overview. Front Neurosci 2020;14:513.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nature Rev Neurosci 2006;7:41–53.

    Article  CAS  Google Scholar 

  17. Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005;57:173–185.

    Article  CAS  PubMed  Google Scholar 

  18. de Lima MNM, Presti-Torres J, Vedana G, et al. Early life stress decreases hippocampal BDNF content and exacerbates recognition memory deficits induced by repeated D-amphetamine exposure. Behav Brain Res 2011;224:100–106.

    Article  PubMed  Google Scholar 

  19. Hilburn C, Nejtek VA, Underwood WA, et al. Is serum brain-derived neurotrophic factor related to craving for or use of alcohol, cocaine, or methamphetamine? Neuropsychiatric Dis Treat 2011;7:357–364.

    CAS  Google Scholar 

  20. He L, Liao Y, Wu Q, et al. Association between brain-derived neurotrophic factor Val66Met polymorphism and methamphetamine use disorder: a meta-analysis. Front Psych 2020;11:585852.

    Article  Google Scholar 

  21. Fries GR, Valvassori SS, Bock H, et al. Memory and brain-derived neurotrophic factor after subchronic or chronic amphetamine treatment in an animal model of mania. J Psych Res 2015;68:329–336.

    Article  Google Scholar 

  22. Lloret-Torres ME, Ayala-Pagán RN, Martínez-Rivera FJ, et al. Hippocampal and amygdalar increased BDNF expression in the extinction of opioid-induced place preference. IBRO Neurosci Rep 2022;13:402–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ren W, Tao J, Wei Y, et al. Time-dependent serum brain-derived neurotrophic factor decline during methamphetamine withdrawal. Medicine 2016;95:e2604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li J, Zhu L, Su H, et al. Regulation of miR-128 in the nucleus accumbens affects methamphetamine-induced behavioral sensitization by modulating proteins involved in neuroplasticity. Addict Biol 2021;26:e12881.

    Article  CAS  PubMed  Google Scholar 

  25. Liu P, Lei G, Chu Z, et al. The role of HINT1 in methamphetamine-induced behavioral sensitization. Psychopharmacology 2020;237:2345–2351.

    Article  CAS  PubMed  Google Scholar 

  26. Hansen JP, Riddle EL, Sandoval V, et al. Methylenedioxymethamphetamine decreases plasmalemmal and vesicular dopamine transport: mechanisms and implications for neurotoxicity. J Pharm Exp Ther 2002;300:1093–1100.

    Article  CAS  Google Scholar 

  27. Cubells JF, Rayport S, Rajendran G, et al. Methamphetamine neurotoxicity involves vacuolation of endocytic organelles and dopamine-dependent intracellular oxidative stress. J Neurosci 1994;14:2260–2271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cunha-Oliveira T, Rego AC, Cardoso SM, et al. Mitochondrial dysfunction and caspase activation in rat cortical neurons treated with cocaine or amphetamine. Brain Res 2006;1089:44–54.

    Article  CAS  PubMed  Google Scholar 

  29. Deng X, Cai NS, McCoy MT, et al. Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharm 2002;42:837–845.

    Article  CAS  Google Scholar 

  30. Weissman BA, Jones CL, Liu Q, et al. Activation and inactivation of neuronal nitric oxide synthase: characterization of Ca2+-dependent [125I]calmodulin binding. Eur J Pharm 2002;435:9–18.

    Article  CAS  Google Scholar 

  31. Brown GC, Cooper CE. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS letters 1994;356:295–298.

    Article  CAS  PubMed  Google Scholar 

  32. Potula R, Hawkins BJ, Cenna JM, et al. Methamphetamine causes mitrochondrial oxidative damage in human T lymphocytes leading to functional impairment. J Immun 2010;185:2867–2876.

    Article  CAS  PubMed  Google Scholar 

  33. Shaerzadeh F, Streit WJ, Heysieattalab S, et al. Methamphetamine neurotoxicity, microglia, and neuroinflammation. J Neuroinflamm 2018;15:341.

    Article  CAS  Google Scholar 

  34. Kim B, Yun J, Park B. Methamphetamine-induced neuronal damage: neurotoxicity and neuroinflammation. Biomol Ther 2020;28:381–388.

    Article  CAS  Google Scholar 

  35. Mori T, Sawaguchi T. Underlying mechanisms of methamphetamine-induced self-injurious behavior and lethal effects in mice. Jap J Hygiene 2018;73:51–56.

    Article  CAS  Google Scholar 

  36. Yue X, Qiao D, Wang A, et al. CD200 attenuates methamphetamine-induced microglial activation and dopamine depletion. J Huazhong Univ Sci Technol Med Sci 2012;32:415–421.

    Article  CAS  Google Scholar 

  37. Liu X, Silverstein PS, Singh V, et al. Methamphetamine increases LPS-mediated expression of IL-8, TNF-α and IL-1 β in human macrophages through common signaling pathways. PLoS One 2012;7:e33822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shi S, Chen T, Zhao M. The crosstalk between neurons and glia in methamphetamine-induced neuroinflammation. Neurochem Res 2022;47:872–884.

    Article  CAS  PubMed  Google Scholar 

  39. Palmer AL, Ousman SS. Astrocytes and aging. Front Aging Neurosci 2018;10:337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Coelho-Santos V, Gonçalves J, Fontes-Ribeiro C, et al. Prevention of methamphetamine-induced microglial cell death by TNF-α and IL-6 through activation of the JAKSTAT pathway. J Neuroinflamm 2012;9:103.

    Article  CAS  Google Scholar 

  41. Bhat AH, Dar KB, Anees S, et al. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother 2015;74:101–110.

    Article  CAS  PubMed  Google Scholar 

  42. Huang E, Huang H, Guan T, et al. Involvement of C/EBP β -related signaling pathway in methamphetamine-induced neuronal autophagy and apoptosis. Toxicol Lett 2019;312:11–21.

    Article  CAS  PubMed  Google Scholar 

  43. Fallahi S, Babri S, Farajdokht F, et al. Neuroprotective effect of ghrelin in methamphetamine-treated male rats. Neurosci Lett 2019;707:134304.

    Article  PubMed  Google Scholar 

  44. Yang L, Guo N, Fan W, et al. Thioredoxin-1 blocks methamphetamine-induced injury in brain through inhibiting endoplasmic reticulum and mitochondria-mediated apoptosis in mice. Neurotoxicology 2020;78:163–169.

    Article  CAS  PubMed  Google Scholar 

  45. Xu X, Huang E, Tai Y, et al. Nupr1 modulates methamphetamine-induced dopaminergic neuronal apoptosis and autophagy through CHOP-Trib3-mediated endoplasmic reticulum stress signaling pathway. Front Mol Neurosci 2017;10:203.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Guo D, Huang X, Xiong T, et al. Molecular mechanisms of programmed cell death in methamphetamine-induced neuronal damag. Front Pharmacol 2022;13:980340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. García-Cabrerizo R, García-Fuster MJ. Methamphetamine binge administration dose-dependently enhanced negative affect and voluntary drug consumption in rats following prolonged withdrawal: role of hippocampal FADD. Addict Biol 2019;24:239–250.

    Article  PubMed  Google Scholar 

  48. Park JH, Seo YH, Jang JH, et al. Asiatic acid attenuates methamphetamine-induced neuroinflammation and neurotoxicity through blocking of NF-κ B/STAT3/ERK and mitochondria-mediated apoptosis pathway. J Neuroinflamm 2017;14:240.

    Article  Google Scholar 

  49. Planells-Ferrer L, Urresti J, Coccia E, et al. Fas apoptosis inhibitory molecules: more than death-receptor antagonists in the nervous system. J Neurochem 2016;139:11–21.

    Article  CAS  PubMed  Google Scholar 

  50. Lin M, Chandramani-Shivalingappa P, Jin H, et al. Methamphetamine-induced neurotoxicity linked to ubiquitin-proteasome system dysfunction and autophagy-related changes that can be modulated by protein kinase C delta in dopaminergic neuronal cells. Neuroscience 2012;210:308–332.

    Article  CAS  PubMed  Google Scholar 

  51. Ma J, Wan J, Meng J, et al. Methamphetamine induces autophagy as a pro-survival response against apoptotic endothelial cell death through the Kappa opioid receptor. Cell Death Dis 2014;5:e1099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nopparat C, Porter JE, Ebadi M, et al. The mechanism for the neuroprotective effect of melatonin against methamphetamine-induced autophagy. J Pineal Res 2010;49:382–389.

    Article  CAS  PubMed  Google Scholar 

  53. Xia Y, Hou X, Fang J, et al. Research progress in detoxification of Chinese materia medica. Chin Tradit Herbal Drugs (Chin) 2016;47:519–527.

    CAS  Google Scholar 

  54. Chen S. Research progress on chemical constituents and pharmacological effects of Corydalis Rhizoma. Inf Tradit Chin Med (Chin) 2021;38:78–82.

    Google Scholar 

  55. Liu L, Liu M, Zhao W, et al. Levo-tetrahydropalmatine: a new potential medication for methamphetamine addiction and neurotoxicity. Exp Neurol 2021;344:113809.

    Article  CAS  PubMed  Google Scholar 

  56. Gong XK, Yue K, Xing JQ, et al. Levo-tetrahydropalmatine, a natural, mixed dopamine receptor antagonist, inhibits methamphetamine self-administration and methamphetamine-induced reinstatement. Pharmacol Biochem Behav 2016;144:67–72.

    Article  CAS  PubMed  Google Scholar 

  57. Cao G, Zhang Y, Zhu L, et al. The inhibitory effect of levotetrahydropalmatine on the methamphetamine-induced spatial memory impairment in mice. Neurosci Lett 2018;672:34–39.

    Article  CAS  PubMed  Google Scholar 

  58. Gao Y, Chu S, Zhang Z, et al. Hepataprotective effects of ginsenoside Rg1—a review. J Ethnopharmacol 2017;206:178–183.

    Article  CAS  PubMed  Google Scholar 

  59. Kim JH, Yi YS, Kim MY, et al. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J Ginseng Res 2017;41:435–443.

    Article  PubMed  Google Scholar 

  60. Kim JH. Pharmacological and medical applications of Panax ginseng and ginsenosides: a review for use in cardiovascular diseases. J Ginseng Res 2018;42:264–269.

    Article  PubMed  Google Scholar 

  61. Zeng Y, Chen Y, Zhang S, et al. Natural products in modulating methamphetamine-induced neuronal apoptosis. Front Pharmacol 2021;12:805991.

    Article  CAS  PubMed  Google Scholar 

  62. Li J, Zeng B, Hu X, et al. Protective effects of ginsenoside Rb1 against blood-brain barrier damage induced by human immunodeficiency virus-1 Tat protein and methamphetamine in Sprague-Dawley rats. Am J Chin Med 2018;46:551–566.

    Article  CAS  PubMed  Google Scholar 

  63. Fu K, Lin H, Miyamoto Y, et al. Pseudoginsenoside-F11 inhibits methamphetamine-induced behaviors by regulating dopaminergic and GABAergic neurons in the nucleus accumbens. Psychopharmacol 2016;233:831–840.

    Article  CAS  Google Scholar 

  64. Li Y, Yang W, Zhu Q, et al. Protective effects on vascular endothelial cell in N’-nitro-L-arginine (L-NNA)-induced hypertensive rats from the combination of effective components of Uncaria rhynchophylla and Semen Raphani. Biosci Trends 2015;9:237–244.

    Article  CAS  PubMed  Google Scholar 

  65. Zhu W, Zhang Y, Huang Y, et al. Chinese herbal medicine for the treatment of drug addiction. Int Rev Neurobiol 2017;135:27–295.

    Google Scholar 

  66. Li J, Liu W, Peng Q, et al. Effect of rhynchophylline on conditioned place preference on expression of NR2B in methamphetamine-dependent mice. Biochem Biophys Res Commun 2014;452:695–700.

    Article  CAS  PubMed  Google Scholar 

  67. Chen YF, Peng J, Fang M, et al. Effect of rhynchophylline on behaviors of methamphetamine-dependent zebrafish and the mechanism. J Southern Med Univ (Chin) 2016;36:1541–1545.

    CAS  Google Scholar 

  68. You G, Shi Q. Research progress of resveratrol. Yunnan Chem Technol (Chin) 2021;48:26–28, 46.

    Google Scholar 

  69. Sun D, Yue Q, Guo W, et al. Neuroprotection of resveratrol against neurotoxicity induced by methamphetamine in mouse mesencephalic dopaminergic neurons. Bio Factors 2015;41:252–260.

    CAS  Google Scholar 

  70. Dennis KM, Clark EO, Andrew SS. Repeated resveratrol treatment attenuates methamphetamine-induced hyperactivity and [3H]dopamine overflow in rodents. Neurosci Letters 2013;554:53–58.

    Article  Google Scholar 

  71. Yao M, Zhang L, Wang L. Astragaloside IV: a promising natural neuroprotective agent for neurological disorders. Biomed Pharmacother 2023;159:1142

    Article  CAS  PubMed  Google Scholar 

  72. Sui L, Li X, Liu K. Caspase-3 and bcl-2 expression in methamphetamine-dependent rat brain interfered with astragaloside IV. J Apoplexy Nerv Dis (Chin) 2015;32:505–507.

    CAS  Google Scholar 

  73. Sui L, Liu K, Shen W, et al. Influence of astragaloside IV on NO, SOD and MDA in methamphetamine dependence rat brain. China Modern Med (Chin) 2014;21:16–18.

    Google Scholar 

  74. Liu Y, Gao J, Peng M, et al. A review on central nervous system effects of gastrodin. Frontiers Pharmacol 2018;9:24.

    Article  Google Scholar 

  75. Zhu T, Liu P, Dong W. Effects of different doses of Gastrodin on conditioned place preference and microglia activation in hippocampus of methamphetamine dependent rats. J Kunming Med Univ (Chin) 2021;42:6–11.

    Google Scholar 

  76. Xue FL, Hong S. Gastronomin injection improves by regulating dorsal striatal miR-30a expression: experimental study of methamphetamine addiction in rats. Pharmacol Clin Chin Mater Med (Chin) 2020;36:85–89.

    Google Scholar 

  77. Xue FL, Hong S, Zeng XF. Study on the mechanism of improvement effects of Gastrodin Injection on methamphetamine induced neurotoxic damage in rats via nNOS pathway. China Pharm (Chin) 2020;31:1171–1178.

    Google Scholar 

  78. He Y. The role of GLUT1 and GLUT3 in the synergistic damage of the blood-brain barrier of tree shrew by METH and HIV-Tat protein and the intervention of gastronomin [Dissertation]. Kunming: Kunming Medical University; 2019.

    Google Scholar 

  79. Gao P. Expression of methamphetamine-dependent neurotrophic factors BDNF and NGF in rat-related brain regions after gastronomin intervention [Dissertation]. Kunming: Kunming Medical University; 2016.

    Google Scholar 

  80. Zhou Y. Methamphetamine-dependent neurotrophic factor receptor expression in rat-related brain regions and intervention treatment of gastronomin [Dissertation]. Kunming: Kunming Medical University; 2017.

    Google Scholar 

  81. Chen X, Wang L, Zhou T. Effects of gastrodin on the levels of TNF-α, IL-1 β and BDNF in serum and hippocampus tissues of methamphetamine-exposed rats. J Shenyang Med Col (Chin) 2018;20:400–403.

    Google Scholar 

Download references

Acknowledgement

Special thanks to Prof. SHEN Hong-ping from the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University for her guidance of the thesis and her project for funding the thesis.

Author information

Authors and Affiliations

Authors

Contributions

Zeng R and Sun Q conceived the idea. Zeng R, Pu HY, and Sun Q developed the idea. Zeng R wrote the manuscript in consultation with Sun Q. Shen HP, Zhang XY and Yao ML provided assistance in subsequent modifications. All authors provided feedback and helped shape the manuscript.

Corresponding author

Correspondence to Qin Sun.

Additional information

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Supported by Sichuan Provincial Science and Technology Department (No. 2022YFS0635), and Luzhou Science and Technology Bureau (No. 2021LZXNYD-Z09)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, R., Pu, Hy., Zhang, Xy. et al. Methamphetamine: Mechanism of Action and Chinese Herbal Medicine Treatment for Its Addiction. Chin. J. Integr. Med. 29, 665–672 (2023). https://doi.org/10.1007/s11655-023-3635-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-023-3635-y

Keywords

Navigation