Skip to main content
Log in

Protective Effects and Potential Mechanism of Tongxinluo on Mice with Thromboangiitis Obliterans Induced by Sodium Laurate

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To investigate the effects of Tongxinluo (TXL) on thromboangiitis obliterans (TAO) and the underlying mechanisms.

Methods

Ninety male C57/BL6J mice were randomly divided into 6 groups according to a random number table: the sham group, TAO model group, Compound Danshen Tablet (CDT) group, and the high-, medium-, and low-dose TXL groups. All mice except the sham group were injected with sodium laurate (0.1 mL, 5 mg/mL) in the femoral artery to establish TAO mouse model. After modeling, mice in the sham and TAO model groups were intragastrically administered 0.5% (w/v) sodium carboxymethylcellulose, mice in the CDT group were intragastrically administered 0.52 g/kg CDT, and mice in the TXL-H, TXL-M, and TXL-L groups were intragastrically administered 1.5, 0.75, and 0.38 g/kg TXL, respectively. After 4 weeks of gavage, the recovery of blood flow in the lower limbs of mice was detected by Laser Doppler Imaging. The pathological changes and thrombosis of the femoral artery were observed by morphological examination. The expressions of tumor necrosis factor α (TNF-α) and inducible nitric oxide synthase (iNOS) in the femoral artery wall were detected by HE staining. Levels of thromboxane B2 (TXB2), 6-keto-prostaglandin F1α (6-keto-PGF1α), endothelin-1 (ET-1), interleukin (IL)-1β and IL-6 were measured using enzyme-linked immunosorbent assay (ELISA). Levels of activated partial thromboplastin time (APTT), prothrombin time (PT), thrombin time (TT) and fibrinogen (FIB) were detected by a fully automated biochemical analyzer.

Results

TXL promoted the restoration of blood flow in the lower limbs, reduced the area of thrombosis in the femoral artery, and alleviated the pathological changes in the femoral artery wall. Moreover, the levels of TXB2, ET-1, IL-6, IL-1β, TNF-α and iNOS were significantly lower in the TXL groups compared with the model group (P<0.05 or P<0.01), while the level of 6-keto-PGF1α was significantly higher (P<0.01). In addition, APTT, PT, and TT were significantly prolonged in TXL groups compared with the model group (P<0.05 or P<0.01), and FIB levels were significantly decreased compared with the model group (P<0.01).

Conclusions

TXL had a protective effect on TAO mice, and the mechanism may involve inhibition of thrombosis and inflammatory responses. TXL may be a potential drug for the treatment of TAO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sharebiani H, Fazeli B, Maniscalco R, Ligi D, Mannello F. The imbalance among oxidative biomarkers and antioxidant defense systems in thromboangiitis obliterans (Winiwarter-Buerger disease). J Clin Med 2020;9:1036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sapkota P, Budhathoky P, Mathew S. Smoking and thromboangitis obliterans—Are they related? JNMA J Nepal Med Assoc 2014;52:802–825.

    Article  CAS  PubMed  Google Scholar 

  3. Modaghegh MS, Hafezi S. Endovascular treatment of thromboangiitis obliterans (Buerger’s disease). Vasc Endovascular Surg 2018;52:124–130.

    Article  PubMed  Google Scholar 

  4. Fazeli B, Ligi D, Keramat S, Maniscalco R, Sharebiani H, Mannello F. Recent updates and advances in Winiwarter-Buerger disease (Thromboangiitis obliterans): biomolecular mechanisms, diagnostics and clinical consequences. Diagnostics (Basel) 2021;11:1736.

    Article  CAS  PubMed  Google Scholar 

  5. Wu S, Sun X, Wu W, Shi D, Jiang T. Effect of revascularization on IL-6 and TNF-α in patients with thromboangiitis obliterans. Exp Ther Med 2018;15:3947–3951.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen JY. Thromboangiitis obliterans. Anatol J Cardiol 2021;25:E8.

    PubMed  Google Scholar 

  7. Liu C, Kong X, Wu X, Wang X, Guan H, Wang H, et al. Alleviation of a disintegrin and metalloprotease 10 (ADAM10) on thromboangiitis obliterans involves the HMGB1/RAGE/NF-κB pathway. Biochem Biophys Res Commun 2018;505:282–289.

    Article  CAS  PubMed  Google Scholar 

  8. Olin JW. Thromboangiitis obliterans: 110 years old and little progress made. J Am Heart Assoc 2018;7:e011214.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chang C, Liu H, Wei C, Chang L, Liang J, Bei H, et al. Tongxinluo regulates expression of tight junction proteins and alleviates endothelial cell monolayer hyperpermeability via ERK-1/2 signaling pathway in oxidized low-density lipoprotein-induced human umbilical vein endothelial cells. Evid Based Complement Alternat Med 2017;2017:4198486.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li Q, Li N, Cui HH, Tian XQ, Jin C, Chen GH, et al. Tongxinluo exerts protective effects via anti-apoptotic and pro-autophagic mechanisms by activating AMPK pathway in infarcted rat hearts. Exp Physiol 2017;102:422–435.

    Article  CAS  PubMed  Google Scholar 

  11. Ma J, Qiao L, Meng L, Ma L, Zhao Y, Liu X, et al. Tongxinluo may stabilize atherosclerotic plaque via multiple mechanisms scanning by genechip. Biomed Pharmacother 2019;113:108767.

    Article  CAS  PubMed  Google Scholar 

  12. Qi Y, Liu W, Yan X, Zhang C, Zhang C, Liu L, et al. Tongxinluo may alleviate inflammation and improve the stability of atherosclerotic plaques by changing the intestinal Flora. Front Pharmacol 2022;13:805266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang P, Liu P, Yang R. Systematic review of Tongxinluo Capsule on the therapeutic effect and hemorheology of patients with transient ischemic attack. Evid Based Complement Alternat Med 2021;2021:5541768.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Xu Y, Li X, Zhang H, Wu Y, Zhang J, Li J, et al. China Tongxinluo study for myocardial protection in patients with acute myocardial infarction (CTS-AMI): Rationale and design of a randomized, double-blind, placebo-controlled, multicenter clinical trial. Am Heart J 2020;227:47–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang M, Liu Y, Xu M, Zhang L, Liu Y, Liu X, et al. Carotid artery plaque intervention with Tongxinluo Capsule (CAPITAL): a multicenter randomized double-blind parallel-group placebo-controlled study. Sci Rep 2019;9:45.

    CAS  Google Scholar 

  16. Zhang Z, Ji J, Zhang D, Ma M, Sun L. Protective effects and potential mechanism of salvianolic acid B on sodium laurate-induced thromboangiitis obliterans in rats. Phytomedicine 2020;66:153110.

    Article  CAS  PubMed  Google Scholar 

  17. Chen Y, Li M, Zhang Y, Di M, Chen W, Liu X, et al. Traditional Chinese medication Tongxinluo attenuates apoptosis in ox-LDL-stimulated macrophages by enhancing Beclin-1-induced autophagy. Biochem Biophys Res Commun 2018;501:336–342.

    Article  CAS  PubMed  Google Scholar 

  18. Wu Y. Collateral theory and vascular lesion treatment. Am J Chin Med 2009;37:241–252.

    Article  CAS  PubMed  Google Scholar 

  19. Wu Y. Construction of the vessel-collateral theory and its guidance for prevention and treatment of vasculopathy. Front Med 2011;5:118–122.

    Article  PubMed  Google Scholar 

  20. Wu P, Zhang Z, Ma G, Li J, Zhou W. Transcriptomics and metabolomics reveal the cardioprotective effect of Compound Danshen Tablet on isoproterenol-induced myocardial injury in high-fat-diet fed mice. J Ethnopharmacol 2020;246:112210.

    Article  CAS  PubMed  Google Scholar 

  21. Guo H, Chen L, Li C, Wang D, Luo Y, Sun G, et al. Anti-hyperlipidemic effects of the Compound Danshen Tablet: roles of antioxidation, anti-inflammation, anticoagulation, and anti-apoptosis. Ann Transl Med 2021;9:744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bian F, Kang S, Cui H, Wang F, Luan T. The clinical efficacy of Compound Danshen Injection on acute cerebral infarction and on the changes in the CRP, D-dimer, and IL-6 levels. Am J Transl Res 2021;13:8126–8133.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kuo YJ, Chang YT, Chung CH, Chuang WJ, Huang TF. Improved antithrombotic activity and diminished bleeding side effect of a PEGylated αβ antagonist, disintegrin. Toxins (Basel) 2020;12:426.

    Article  CAS  PubMed  Google Scholar 

  24. van Minnen B, Piersma-Wichers M, Rooijers W, van Diermen DE, Rozema FR. Antithrombotics: backgrounds with haemostasis and antithrombotic therapy. Ned Tijdschr Tandheelkd 2020;127:617–624.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang YL, Xi MZ, Choi YB, Lee BH. Antithrombotic effect of fermented ophiopogon japonicus in thrombosis-induced rat models. J Med Food 2017;20:637–645.

    Article  CAS  PubMed  Google Scholar 

  26. Kij A, Mateuszuk L, Sitek B, Przyborowski K, Zakrzewska A, Wandzel K, et al. Simultaneous quantification of PGI2 and TXA2 metabolites in plasma and urine in NO-deficient mice by a novel UHPLC/MS/MS method. J Pharm Biomed Anal 2016;129:148–154.

    Article  CAS  PubMed  Google Scholar 

  27. Cheng Z, Jia W, Tian X, Jiang P, Zhang Y, Li J, et al. Cotinine inhibits TLR4/NF-κB signaling pathway and improves deep vein thrombosis in rats. Biosci Rep 2020;40:BSR20201293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu X, Dong J, Liang Q, Wang HD, Liu Z, Xu R, et al. Coagulant effects and mechanism of Schefflera heptaphylla (L.) Frodin. Molecules 2019;24:4547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev 2018;281:8–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Everett BM, Donath MY, Pradhan AD, Thuren T, Pais P, Nicolau JC, et al. Anti-inflammatory therapy with Canakinumab for the prevention and management of diabetes. J Am Coll Cardiol 2018;71:2392–2401.

    Article  CAS  PubMed  Google Scholar 

  31. Mehta AK, Gracias DT, Croft M. TNF activity and T cells. Cytokine 2018;101:14–18.

    Article  CAS  PubMed  Google Scholar 

  32. Wu H, Wang Y, Zhang Y, Xu F, Chen J, Duan L, et al. Breaking the vicious loop between inflammation, oxidative stress and coagulation, a novel anti-thrombus insight of nattokinase by inhibiting LPS-induced inflammation and oxidative stress. Redox Biol 2020;32:101500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Saha P, Smith A. TNF-α (tumor necrosis factor-α). Arterioscler Thromb Vasc Biol 2018;38:2542–2543.

    Article  CAS  PubMed  Google Scholar 

  34. Davizon-Castillo P, McMahon B, Aguila S, Bark D, Ashworth K, Allawzi A, et al. TNF-α-driven inflammation and mitochondrial dysfunction define the platelet hyperreactivity of aging. Blood 2019;134:727–740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Branchford BR, Carpenter SL. The role of inflammation in venous thromboembolism. Front Pediatr 2018;6:142.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bekendam RH, Iyu D, Passam F, Stopa JD, De Ceunynck K, Muse O, et al. Protein disulfide isomerase regulation by nitric oxide maintains vascular quiescence and controls thrombus formation. J Thromb Haemost 2018;16:2322–2335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sonowal H, Pal PB, Shukla K, Ramana KV. Aspalatone prevents VEGF-induced lipid peroxidation, migration, tube formation, and dysfunction of human aortic endothelial cells. Oxid Med Cell Longev 2017;2017:2769347.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Li YN, Wang XJ, Li B, Liu K, Qi JS, Liu BH, et al. Tongxinluo inhibits cyclooxygenase-2, inducible nitric oxide synthase, hypoxia-inducible factor-2α/vascular endothelial growth factor to antagonize injury in hypoxia-stimulated cardiac microvascular endothelial cells. Chin Med J 2015;128:1114–1120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu Y, Tang GH, Sun YH, Lin XJ, Wei C, Yang GY, et al. The protective role of Tongxinluo on blood-brain barrier after ischemia-reperfusion brain injury. J Ethnopharmacol 2013;148:632–639.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

GAO HL designed the present study and revised the paper. Gu JJ participated in the animal experiments and wrote the paper. Wei YR, Ma K and Wang XQ tested the indicators and analyzed the data. All authors agree to be accountable for all aspects of the work, ensuring its integrity and accuracy.

Corresponding author

Correspondence to Huai-lin Gao.

Additional information

Conflict of Interest

There are no known conflicts of interest in this publication and there has been no significant financial support for this work that could affect its outcome.

Supported by the Natural Science Foundation of Hebei Province (No. H2019106062)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Jj., Wei, Yr., Ma, K. et al. Protective Effects and Potential Mechanism of Tongxinluo on Mice with Thromboangiitis Obliterans Induced by Sodium Laurate. Chin. J. Integr. Med. 29, 608–616 (2023). https://doi.org/10.1007/s11655-023-3630-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-023-3630-3

Keywords

Navigation