Skip to main content
Log in

Anti-oxidant and Anti-inflammatory Effects of Ethanol Extract from Polygala sibirica L. var megalopha Fr. on Lipopolysaccharide-Stimulated RAW264.7 Cells

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To investigate the anti-oxidant and anti-inflammatory effects of ethanol extract of Polygala sibirica L. var megalopha Fr. (EEP) on RAW264.7 mouse macrophages.

Methods

RAW264.7 cells were pretreated with 0–200 µg/mL EEP or vehicle for 2 h prior to exposure to 1 µg/mL lipopolysaccharide (LPS) for 24 h. Nitric oxide (NO) and prostaglandin (PGE2) production were determined by Griess reagent and enzyme-linked immunosorbent assay (ELISA), respectively. The mRNA levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor α (TNF-α), interleukin-1beta (IL-1β), and IL-6 were determined using reverse transcription polymerase chain reaction (RT-PCR). Western blot assay was used to determine the protein expressions of iNOS, COX-2, phosphorylation of extracellular regulated protein kinases (ERK1/2), c-Jun N-terminal kinase (JNK), inhibitory subunit of nuclear factor Kappa B alpha (Iκ B-α) and p38. Immunofluorescence was used to observe the nuclear expression of nuclear factor-κ B p65 (NF-κ B p65). Additionally, the anti-oxidant potential of EEP was evaluated by reactive oxygen species (ROS) production and the activities of catalase (CAT) and superoxide dismutase (SOD). The 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl (OH), superoxide anion (O2) radical and nitrite scavenging activity were also measured.

Results

The total polyphenol and flavonoid contents of EEP were 23.50±2.16 mg gallic acid equivalent/100 g and 43.78±3.81 mg rutin equivalent/100 g. With EEP treatment (100 and 150 µg/mL), there was a notable decrease in NO and PGE2 production induced by LPS in RAW264.7 cells by downregulation of iNOS and COX-2 mRNA and protein expressions (P<0.01 or P<0.05). Furthermore, with EEP treatment (150 µg/mL), there was a decrease in the mRNA expression levels of TNF-α, IL-1β and IL-6, as well as in the phosphorylation of ERK, JNK and p38 mitogen-activated protein kinase (MAPK, P<0.01 or P<0.05), by blocking the nuclear translocation of NF-κ B p65 in LPS-stimulated cells. In addition, EEP (100 and 150 µg/mL) led to an increase in the anti-oxidant enzymes activity of SOD and CAT, with a concomitant decrease in ROS production (P<0.01 or P<0.05). EEP also indicated the DPPH, OH, O2 radical and nitrite scavenging activity.

Conclusion

EEP inhibited inflammatory responses in activated macrophages through blocking MAPK/NF-κ B pathway and protected against oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kotlyarov S, Kotlyarova A. Molecular pharmacology of inflammation resolution in atherosclerosis. Int J Mol Sci 2022;23:4808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Denk D, Greten FR. Inflammation: the incubator of the tumor microenvironment. Trends Cancer 2022;8:901–914.

    Article  CAS  PubMed  Google Scholar 

  3. Hanchang W, Wongmanee N, Yoopum S, Rojanaverawong W. Protective role of hesperidin against diabetes induced spleen damage: mechanism associated with oxidative stress and inflammation. J Food Biochem 2022;46:e14444.

    Article  CAS  PubMed  Google Scholar 

  4. Merelli A, Repetto M, Lazarowski A, Auzmendi J. Hypoxia, oxidative stress, and inflammation: three faces of neurodegenerative diseases. J Alzheimers Dis 2021;82: S109–S126.

    Article  CAS  PubMed  Google Scholar 

  5. Han X, Ding S, Jiang H, Liu G. Roles of macrophages in the development and treatment of gut inflammation. Front Cell Dev Biol 2021;9:625423.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lu ZB, Ou JY, Cao HH, Liu JS, Yu LZ. Heat-clearing Chinese medicines in lipopolysaccharide-induced inflammation. Chin J Integr Med 2020;26:552–559.

    Article  CAS  PubMed  Google Scholar 

  7. Hwang JH, Ma JN, Park JH, Jung HW, Park YK. Anti-inflammatory and antioxidant effects of MOK, a polyherbal extract, on lipopolysaccharide-stimulated RAW 264.7 macrophages. Int J Mol Med 2019;43:26–36.

    CAS  PubMed  Google Scholar 

  8. Vallejo MJ, Salazar L, Grijalva M. Oxidative stress modulation and ROS-mediated toxicity in cancer: a review on in vitro models for plant-derived compounds. Oxid Med Cell Longev 2017;2017:4586068.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Victoni T, Barreto E, Lagente V, Carvalho V. Oxidative imbalance as a crucial factor in inflammatory lung diseases: could antioxidant treatment constitute a new therapeutic strategy? Oxid Med Cell Longev 2021;2021:6646923.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li LS, Chiroma SM, Hashim T, Adam SK, Moklas MA, Yusuf Z, et al. Antioxidant and anti-inflammatory properties of Erythroxylum cuneatum alkaloid leaf extract. Heliyon 2020;6:e04141.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Xia Y, Wang D, Li J, Chen M, Wang D, Jiang Z, et al. Compounds purified from edible fungi fight against chronic inflammation through oxidative stress regulation. Front Pharmacol 2022;13:974794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Çalış L, Ünlü A, Uğurlu AZ, Dönmez AA, Soliman YH, Jurt S, et al. Xanthones and xanthone O-β-D-glucosides from the roots of Polygala azizsancarii Dönmez. Chem Biodivers 2022;19:e202200499.

    Article  PubMed  Google Scholar 

  13. Lacaille-Dubois MA, Delaude C, Mitaine-Offer AC. A review on the phytopharmacological studies of the genus Polygala. J Ethnopharmacol 2020;249:112417.

    Article  CAS  PubMed  Google Scholar 

  14. Zhao X, Cui Y, Wu P, Zhao P, Zhou Q, Zhang Z, et al. Polygalae Radix: a review of its traditional uses, phytochemistry, pharmacology, toxicology, and pharmacokinetics. Fitoterapia 2020;147:104759.

    Article  CAS  PubMed  Google Scholar 

  15. Cheng YG, Tan JY, Li JL, Wang SH, Liu KL, Wang JM, et al. Chemical constituents from the aerial part of Polygala tenuifolia. Nat Prod Res 2022;36:5449–5454.

    Article  CAS  PubMed  Google Scholar 

  16. Ahmed M, Ji M, Sikandar A, Iram A, Qin P, Zhu H, et al. Phytochemical analysis, biochemical and mineral composition and GC-MS profiling of methanolic extract of Chinese arrowhead Sagittaria Trifolia I. from northeast China. Molecules 2019;24:3025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kabra A, Sharma R, Hano C, Kabra R, Martins N, Baghel US. Phytochemical composition, antioxidant, and antimicrobial attributes of different solvent extracts from Myrica esculenta Buch.-Ham. ex. D. Don leaves. Biomolecules 2019;9:357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Islam MZ, Park BJ, Jeong SY, Kang SW, Shin BK, Lee YT. Assessment of biochemical compounds and antioxidant enzyme activity in barley and wheatgrass under water-deficit condition. J Sci Food Agric 2022;102:1995–2002.

    Article  CAS  PubMed  Google Scholar 

  19. Xue Z, Gao X, Yu W, Zhang Q, Song W, Li S, et al. Biochanin a alleviates oxidative damage caused by the urban particulate matter. Food Funct 2021;12:1958–1972.

    Article  CAS  PubMed  Google Scholar 

  20. Paramjeet K, Manish K, Sandeep K, Ajay K, Satwinderjeet K. In vitro modulation of genotoxicity and oxidative stress by polyphenol-rich fraction of Chinese Ladder Brake (Pteris vittata L.). Appl Biochem Biotechnol 2023; doi: https://doi.org/10.1007/s12010-023-04561-3.

  21. Liu J, Zhu X, Yang D, Li R, Jiang J. Effect of heat treatment on the anticancer activity of Houttuynia Cordata Thunb aerial stem extract in human gastric cancer SGC-7901 cells. Nutr Cancer 2021;73:160–168.

    Article  CAS  PubMed  Google Scholar 

  22. Tu YJ, Tan B, Jiang L, Wu ZH, Yu HJ, Li XQ, et al. Emodin inhibits lipopolysaccharide-induced inflammation by activating autophagy in RAW 264.7 cells. Chin J Integr Med 2021;27:345–352.

    Article  CAS  PubMed  Google Scholar 

  23. Man MQ, Wakefield JS, Mauro TM, Elias PM. Regulatory role of nitric oxide in cutaneous inflammation. Inflammation 2022;45:949–964.

    Article  CAS  PubMed  Google Scholar 

  24. Zhen D, Xuan TQ, Hu B, Bai X, Fu DN, Wang Y, et al. Pteryxin attenuates LPS-induced inflammatory responses and inhibits NLRP3 inflammasome activation in RAW 264.7 cells. J Ethnopharmaco 2022;284:114753.

    Article  CAS  Google Scholar 

  25. Bosch DJ, Nieuwenhuijs-Moeke GJ, van Meurs M, Abdulahad WH, Struys MMRF. Immune modulatory effects of nonsteroidal anti-inflammatory drugs in the perioperative period and their consequence on postoperative outcome. Anesthesiology 2022;136:843–860.

    Article  CAS  PubMed  Google Scholar 

  26. Bian M, Zhen D, Shen QK, Du HH, Ma QQ, Quan ZS, et al. Structurally modified glycyrrhetinic acid derivatives as antiinflammatory agents. Bioorg Chem 2021;107:104598.

    Article  CAS  PubMed  Google Scholar 

  27. Splichal I, Rychlik I, Splichalova I, Karasova D, Splichalova A. Toll-like receptor 4 signaling in the ileum and colon of gnotobiotic piglets infected with Salmonella typhimurium or its isogenic Δrfa mutants. Toxins (Basel) 2020;12:545.

    Article  CAS  PubMed  Google Scholar 

  28. Ha AT, Rahmawati L, You L, Hossain MA, Kim JH, Cho JY. Anti-inflammatory, antioxidant, moisturizing, and antimelanogenesis effects of quercetin 3-Oβ-D-glucuronide in human keratinocytes and melanoma cells via activation of NF-κ B and AP-1 pathways. Int J Mol Sci 2021;23:433.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ronkina N, Gaestel M. MAPK-activated protein kinases: servant or partner? Annu Rev Biochem 2022;91:505–540.

    Article  PubMed  Google Scholar 

  30. Park JH, Kim JH, Shin J, Kang ES, Cho BO. Anti-inflammatory effects of Peucedanum japonicum Thunberg leaves extract in lipopolysaccharide-stimulated RAW264.7 cells. J Ethnopharmacol 2023;309:116362.

    Article  CAS  PubMed  Google Scholar 

  31. Wu Z, Ma L, Lin P, Dai Z, Lu Z, Yan L, et al. Extracellular vesicles derived from Pinctada martensii mucus regulate skin inflammation via the NF-kappaB/NLRP3/MAPK pathway. Biochem Biophys Res Commun 2022;634:10–19.

    Article  CAS  PubMed  Google Scholar 

  32. Kumar A, Kour G, Chibber P, Saroch D, Kumar C, Ahmed Z. Novel alantolactone derivative AL-04 exhibits potential anti-inflammatory activity via modulation of iNOS, COX-2 and NF-κB. Cytokine 2022;158:155978.

    Article  CAS  PubMed  Google Scholar 

  33. Peng J, Hu T, Li J, Du J, Zhu K, Cheng B, et al. Shepherd’s purse polyphenols exert its anti-inflammatory and antioxidative effects associated with suppressing MAPK and NF-κ B pathways and heme oxygenase-1 activation. Oxid Med Cell Longev 2019;2019:7202695.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kim SY, Jin CY, Kim CH, Yoo YH, Choi SH, Kim GY, et al. Isorhamnetin alleviates lipopolysaccharide-induced inflammatory responses in BV2 microglia by inactivating NF-κB, blocking the TLR4 pathway and reducing ROS generation. Int J Mol Med 2019;43:682–692.

    CAS  PubMed  Google Scholar 

  35. Surai PF, Kochish II, Fisinin VI, Kidd MT. Antioxidant defence systems and oxidative stress in poultry biology: an update. Antioxidants (Basel) 2019;8:235.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Liu JJ and Yang CL performed the main experiments. Wang SB and He WP performed the anti-oxidant experiments. Liu JJ designed the experiments and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jin-juan Liu.

Ethics declarations

The authors declare no conflicts of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Cl., Wang, Sb., He, Wp. et al. Anti-oxidant and Anti-inflammatory Effects of Ethanol Extract from Polygala sibirica L. var megalopha Fr. on Lipopolysaccharide-Stimulated RAW264.7 Cells. Chin. J. Integr. Med. 29, 905–913 (2023). https://doi.org/10.1007/s11655-023-3602-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-023-3602-7

Keywords

Navigation