Skip to main content

Advertisement

Log in

Inflammatory and Immunomodulatory Effects of Tripterygium wilfordii Multiglycoside in Mouse Models of Psoriasis Keratinocytes

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To determine the role of Tripterygium wilfordii multiglycoside (TGW) in the treatment of psoriatic dermatitis from a cellular immunological perspective.

Methods

Mouse models of psoriatic dermatitis were established by imiquimod (IMQ). Twelve male BALB/c mice were assigned to IMQ or IMQ+TGW groups according to a random number table. Histopathological changes in vivo were assessed by hematoxylin and eosin staining. Ratios of immune cells and cytokines in mice, as well as PAM212 cell proliferation in vitro were assessed by flow cytometry. Pro-inflammatory cytokine expression was determined using reverse transcription quantitative polymerase chain reaction.

Results

TGW significantly ameliorated the severity of IMQ-induced psoriasis-like mouse skin lesions and restrained the activation of CD45+ cells, neutrophils and T lymphocytes (all P<0.01). Moreover, TGW significantly attenuated keratinocytes (KCs) proliferation and downregulated the mRNA levels of inflammatory cytokines including interleukin (IL)-17A, IL-23, tumor necrosis factor α, and chemokine (C-X-C motif) ligand 1 (P<0.01 or P<0.05). Furthermore, it reduced the number of γ δ T17 cells in skin lesion of mice and draining lymph nodes (P<0.01).

Conclusions

TGW improved psoriasis-like inflammation by inhibiting KCs proliferation, as well as the associated immune cells and cytokine expression. It inhibited IL-17 secretion from γ δ T cells, which improved the immune-inflammatory microenvironment of psoriasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao Y, Liang NN, Chang WJ, Li JQ, Jiao JJ, Hou RX, et al. Role of psoriatic keratinocytes in the metabolic reprogramming of dermal mesenchymal stem cells. Int J Dermatol 2022;61:337–345.

    Article  PubMed  CAS  Google Scholar 

  2. Afonina IS, van Nuffel E, Beyaert R. Immune responses and therapeutic options in psoriasis. Cell Mol Life Sci 2021;78:2709–2727.

    Article  PubMed  CAS  Google Scholar 

  3. Yamakami Y, Morino K, Takauji Y, Kasukabe R, Miki K, Hossain MN, et al. Extract of Emblica officinalis enhances the growth of human keratinocytes in culture. J Integr Med 2019;17:141–146.

    Article  PubMed  Google Scholar 

  4. Sharma A, Upadhyay DK, Gupta GD, Narang RK, Rai VK. IL-23/Th17 axis: a potential therapeutic target of psoriasis. Curr Drug Res Rev 2022;14:24–36.

    Article  PubMed  CAS  Google Scholar 

  5. Srivastava AK, Yadav TC, Khera HK, Mishra P, Raghuwanshi N, Pruthi V, et al. Insights into interplay of immunopathophysiological events and molecular mechanistic cascades in psoriasis and its associated comorbidities. J Autoimmun 2021;118:102614.

    Article  PubMed  CAS  Google Scholar 

  6. Zhang M, Li N, Cai R, Gu J, Xie F, Wei H, et al. Rosmarinic acid protects mice from imiquimod induced psoriasis-like skin lesions by inhibiting the IL-23/Th17 axis via regulating JAK2/ STAT3 signaling pathway. Phytother Res 2021;35:4526–4537.

    Article  PubMed  CAS  Google Scholar 

  7. Przepiórka-Kosińska JM, Bartosińska J, Raczkiewicz D, Bojar I, Kosiński J, Krasowska D, et al. Serum concentration of osteopontin and interleukin 17 in psoriatic patients. Adv Clin Exp Med 2020;29:203–208.

    Article  PubMed  Google Scholar 

  8. Sakkas LI, Bogdanos DP. Are psoriasis and psoriatic arthritis the same disease? The IL-23/IL-17 axis data. Autoimmun Rev 2017;16:10–15.

    Article  PubMed  CAS  Google Scholar 

  9. Kuen DS, Kim BS, Chung Y. IL-17-producing cells in tumor immunity: friends or foes? Immune Netw 2020;20:e6.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Qi C, Wang Y, Li P, Zhao J. Gamma Delta T cells and their pathogenic role in psoriasis. Front Immunol 2021;12:627139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Liu L, Chen X, Lu Y, Sun XY, Ze K, Zhou YQ, et al. Celastrol gel ameliorates imiquimod-induced psoriasis-like dermatitis in mice by targeting Langerhans cells. Biomed Pharmacother 2022;147:112644.

    Article  PubMed  CAS  Google Scholar 

  12. Wang S, Kozai M, Mita H, Cai Z, Masum MA, Ichii O, et al. REV-ERB agonist suppresses IL-17 production in γ δ T cells and improves psoriatic dermatitis in a mouse model. Biomed Pharmacother 2021;144:112283.

    Article  PubMed  CAS  Google Scholar 

  13. Song CY, Xu YG, Lu YQ. Use of Tripterygium wilfordii Hook F for immune-mediated inflammatory diseases: progress and future prospects. J Zhejiang Univ Sci B 2020;21:280–290.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yuan K, Li X, Lu Q, Zhu Q, Jiang H, Wang T, et al. Application and mechanisms of triptolide in the treatment of inflammatory diseases—a review. Front Pharmacol 2019;10:1469.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Li J, Zhang T, Fei XF, Song Y. Application of Tripterygium wilfordii in the treatment of psoriasis. China Pharmaceutic (Chin) 2019;28:98–101.

    Google Scholar 

  16. Tang Y, Liu Q, Feng Y, Zhang Y, Xu Z, Wen C, et al. Tripterygium ingredients for pathogenicity cells in rheumatoid arthritis. Front Pharmacol 2020;11:583171.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Luo D, Zuo Z, Zhao H, Tan Y, Xiao C. Immunoregulatory effects of Tripterygium wilfordii Hook F and its extracts in clinical practice. Front Med 2019;13:556–563.

    Article  PubMed  Google Scholar 

  18. Xie Y, Ding J, Gao J, Zhang J, Cen S, Zhou J. Triptolide reduces PD-L1 through the EGFR and IFN-γ/IRF1 dual signaling pathways. Int Immunopharmacol 2023;118:109993.

    Article  PubMed  CAS  Google Scholar 

  19. Cheng Y, Zhao Y, Zheng Y. Therapeutic potential of triptolide in autoimmune diseases and strategies to reduce its toxicity. Chin Med 2021;16:114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Wang JM, Li JY, Cai H, Chen RX, Zhang YY, Zhang LL, et al. Nrf2 participates in mechanisms for reducing the toxicity and enhancing the antitumour effect of Radix Tripterygium wilfordii to S180-bearing mice by herbal-processing technology. Pharm Biol 2019;57:437–448.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Zhao GH, Vaszar LT, Qiu DM, Shi LF, Kao PN. Antiinflammatory effects of triptolide in human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2000;279:L958–L966.

    Article  PubMed  CAS  Google Scholar 

  22. Zhang Z, Kuo JC, Zhang C, Huang Y, Lee RJ. Ivermectin enhanced antitumor activity of Resiquimod in a co-loaded squalene emulsion. J Pharm Sci 2022;111:3038–3046.

    Article  PubMed  CAS  Google Scholar 

  23. Li R, Lu K, Wang Y, Chen M, Zhang F, Shen H, et al. Triptolide attenuates pressure overload-induced myocardial remodeling in mice via the inhibition of NLRP3 inflammasome expression. Biochem Biophys Res Commun 2017;485:69–75.

    Article  PubMed  CAS  Google Scholar 

  24. Gao J, Chen F, Fang H, Mi J, Qi Q, Yang M. Daphnetin inhibits proliferation and inflammatory response in human HaCaT keratinocytes and ameliorates imiquimod-induced psoriasis-like skin lesion in mice. Biol Res 2020;53:48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Moos S, Mohebiany AN, Waisman A, Kurschus FC. Imiquimod-induced psoriasis in mice depends on the IL-17 signaling of keratinocytes. J Invest Dermatol 2019;139:1110–1117.

    Article  PubMed  CAS  Google Scholar 

  26. Liao HQ, Yang B. Effects of Tripterygium wilfordii polyglycosides on imiquimod induced psoriasis like lesions in mice and its mechanism. Chin J Clin Pharmacol (Chin) 2021;37:3.

    Google Scholar 

  27. Guo J, Qi C, Liu Y, Guo X, Meng Y, Zhao J, et al. Terrestrosin D ameliorates skin lesions in an imiquimod-induced psoriasis-like murine model by inhibiting the interaction between substance P and dendritic cells. Phytomedicine 2022;95:153864.

    Article  PubMed  CAS  Google Scholar 

  28. He Q, Zhang B, Hu F, Long J, Shi Q, Pi X, et al. Triptolide inhibits the proliferation of HaCaT cells induced by IL22 via upregulating miR-181b-5p. Drug Des Devel Ther 2020;14:2927–2935.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Grän F, Kerstan A, Serfling E, Goebeler M, Muhammad K. Current developments in the immunology of psoriasis. Yale J Biol Med 2020;93:97–110.

    PubMed  PubMed Central  Google Scholar 

  30. Astry B, Venkatesha SH, Moudgil KD. Involvement of the IL-23/IL-17 axis and the Th17/Treg balance in the pathogenesis and control of autoimmune arthritis. Cytokine 2015;74:54–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Yamanaka-Takaichi M, Ghanian S, Katzka DA, Torgerson RR, Alavi A. Candida infection associated with anti-IL-17 medication: a systematic analysis and review of the literature. Am J Clin Dermatol 2022;23:469–480.

    Article  PubMed  Google Scholar 

  32. Kim HJ, Kim SH, Kim TG, Park JY, Lee M, Kim DS, et al. Interleukin-21 receptor signalling is not critically required for imiquimod-induced psoriasiform dermatitis in mice. Exp Dermatol 2018;27:191–195.

    Article  PubMed  CAS  Google Scholar 

  33. Li F, Hao X, Chen Y, Bai L, Gao X, Lian Z, et al. The microbiota maintain homeostasis of liver-resident γ δ T-17 cells in a lipid antigen/CD1d-dependent manner. Nat Commun 2017;7:13839.

    Article  ADS  PubMed  Google Scholar 

  34. Huang TH, Lin CF, Alalaiwe A, Yang SC, Fang JY. Apoptotic or antiproliferative activity of natural products against keratinocytes for the treatment of psoriasis. Int J Mol Sci 2019;20:2558.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Paine A, Ritchlin C. Bone remodeling in psoriasis and psoriatic arthritis: an update. Curr Opin Rheumatol 2016;28:66–75.

    Article  PubMed  CAS  Google Scholar 

  36. Bai H, Gao X, Zhao L, Peng Y, Yang J, Qiao S, et al. Respective IL-17A production by γ δ T and Th17 cells and its implication in host defense against chlamydial lung infection. Cell Mol Immunol 2017;14:850–861.

    Article  PubMed  CAS  Google Scholar 

  37. Ueharaguchi Y, Honda T, Kusuba N, Hanakawa S, Adachi A, Sawada Y, et al. Thromboxane A2 facilitates IL-17A production from Vγ4+ γ δ T cells and promotes psoriatic dermatitis in mice. J Allergy Clin Immunol 2018;142:680–683.e2.

    Article  PubMed  CAS  Google Scholar 

  38. Cai Y, Xue F, Quan C, Qu M, Liu N, Zhang Y, et al. A critical role of the IL-1β -IL-1R signaling pathway in skin inflammation and psoriasis pathogenesis. J Invest Dermatol 2019;139:146–156.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Zhang S contributed to validation, formal analysis and wrote original draft. Zhang S, Li HJ, Liu L and Sun XY carried out the experiments. Li HJ contributed to methodology and visualization of study. Yang CM, Wang J, Yan G and Zhou YQ performed formal analysis. Sun XY and Miao X performed validation. Lu Y and Hu MQ contributed to visualization. Liu L, Chen ST and Li X contributed to review and editing of manuscript. Li X was responsible for resources and funding acquisition. Li B contributed to conceptualization, resources, and project administration. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Xin Li.

Ethics declarations

There are no conflicts of interest to declare.

Additional information

Supported by the National Natural Science Foundation of China (Nos. 81973860, 82074427), Shanghai Pujiang Talent Program (No. 2020PJD067), and Science and Technology Commission of Shanghai Municipality (Nos. 21Y21920100, 21Y21920102)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Li, Hj., Yang, Cm. et al. Inflammatory and Immunomodulatory Effects of Tripterygium wilfordii Multiglycoside in Mouse Models of Psoriasis Keratinocytes. Chin. J. Integr. Med. 30, 222–229 (2024). https://doi.org/10.1007/s11655-023-3599-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-023-3599-y

Keywords

Navigation