Skip to main content
Log in

Polypeptide from Moschus Suppresses Lipopolysaccharide-Induced Inflammation by Inhibiting NF-κ B-ROS/NLRP3 Pathway

Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To examine the anti-inflammatory effects and potential mechanisms of polypeptide from Moschus (PPM) in lipopolysaccharide (LPS)-induced THP-1 macrophages and BALB/c mice.

Methods

The polypeptide was extracted from Moschus and analyzed by high-performance liquid chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Subsequently, LPS was used to induce inflammation in THP-1 macrophages and BALB/c mice. In LPS-treated or untreated THP-1 macrophages, cell viability was observed by cell counting kit 8 and lactate dehydrogenase release assays; the proinflammatory cytokines and reactive oxygen species (ROS) were measured by enzyme-linked immunosorbent assay and flow cytometry, respectively; and protein and mRNA levels were measured by Western blot and real-time quantitative polymerase chain reaction (qRT-PCR), respectively. In LPS-induced BALB/c mice, the proinflammatory cytokines were measured, and lung histology and cytokines were observed by hematoxylin and eosin (HE) and immunohistochemical (IHC) staining, respectively.

Results

The SDS-PAGE results suggested that the molecular weight of purified PPM was in the range of 10–26 kD. In vitro, PPM reduced the production of interleukin 1β (IL-1β), IL-18, tumor necrosis factor α (TNF-α), IL-6 and ROS in LPS-induced THP-1 macrophages (P<0.01). Western blot analysis demonstrated that PPM inhibited LPS-induced nuclear factor κB (NF-κB) pathway and thioredoxin interacting protein (TXNIP)/nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 (NLRP3) inflammasome pathway by reducing protein expression of phospho-NF-κB p65, phospho-inhibitors of NF-κB (Iκ Bs) kinase α/β (IKKα/β), TXNIP, NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and pro-caspase-1 (P<0.05 or P<0.01). In addition, qRT-PCR revealed the inhibitory effects of PPM on the mRNA levels of TXNIP, NLRP3, ASC, and caspase-1 (P<0.05 or P<0.01). Furthermore, in LPS-induced BALB/c mice, PPM reduced TNF-α and IL-6 levels in serum (P<0.05 or P<0.01), decreased IL-1β and IL-18 levels in the lungs (P<0.01) and alleviated pathological injury to the lungs.

Conclusion

PPM could attenuate LPS-induced inflammation by inhibiting the NF-κB-ROS/NLRP3 pathway, and may be a novel potential candidate drug for treating inflammation and inflammation-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Herold K, Mrowka R. Inflammation-dysregulated inflammatory response and strategies for treatment. Acta Physiol (Oxf) 2019;226:e13284.

    Article  PubMed  Google Scholar 

  2. Varela ML, Mogildea M, Moreno I, Lopes A. Acute inflammation and metabolism. Inflammation 2018;41:1115–1127.

    Article  CAS  PubMed  Google Scholar 

  3. Li D, Wu M. Pattern recognition receptors in health and diseases. Signal Transduct Target Ther 2021;6:291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mollaei M, Abbasi A, Hassan ZM, Pakravan N. The intrinsic and extrinsic elements regulating inflammation. Life Sci 2020;260:118258.

    Article  CAS  PubMed  Google Scholar 

  5. Feehan KT, Gilroy DW. Is resolution the end of inflammation? Trends Mol Med 2019;25:198–214.

    Article  CAS  PubMed  Google Scholar 

  6. Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol 2017;39:517–528.

    Article  CAS  PubMed  Google Scholar 

  7. Savin IA, Zenkova MA, Sen’kova AV. Pulmonary fibrosis as a result of acute lung inflammation: molecular mechanisms, relevant in vivo models, prognostic and therapeutic approaches. Int J Mol Sci 2022;29:14959.

    Article  Google Scholar 

  8. Yang X, Chang Y, Wei W. Endothelial dysfunction and inflammation: immunity in rheumatoid arthritis. Mediators Inflamm 2016;2016:6813016.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Frangou E, Vassilopoulos D, Boletis J, Boumpas DT. An emerging role of neutrophils and NETosis in chronic inflammation and fibrosis in systemic lupus erythematosus (SLE) and ANCA-associated vasculitides (AAV): implications for the pathogenesis and treatment. Autoimmun Rev 2019;18:751–760.

    Article  CAS  PubMed  Google Scholar 

  10. Wolf D, Ley K. Immunity and inflammation in atherosclerosis. Circ Res 2019;124:315–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ozben T, Ozben S. Neuro-inflammation and anti-inflammatory treatment options for Alzheimer’s disease. Clin Biochem 2019;72:87–89.

    Article  CAS  PubMed  Google Scholar 

  12. Caggiu E, Arru G, Hosseini S, Niegowska M, Sechi G, Zarbo IR, et al. Inflammation, infectious triggers, and Parkinson’s disease. Front Neurol 2019;10:122.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dang WT, Xu D, Zhou JG. Effect of berberine on activation of TLR4-NFκB signaling pathway and NLRP3 inflammasome in patients with gout. Chin J Integr Med 2023;29:10–18.

    Article  CAS  PubMed  Google Scholar 

  14. Taeb AM, Hooper MH, Marik PE. Sepsis: current definition, pathophysiology, diagnosis, and management. Nutr Clin Pract 2017;32:296–308.

    Article  CAS  PubMed  Google Scholar 

  15. Kumar V. Pulmonary innate immune response determines the outcome of inflammation during pneumonia and sepsis-associated acute lung injury. Front Immunol 2020;11:1722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dickson K, Lehmann C. Inflammatory response to different toxins in experimental sepsis models. Int J Mol Sci 2019;20:4341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ciesielska A, Matyjek M, Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced proinflammatory signaling. Cell Mol Life Sci 2021;78:1233–1261.

    Article  CAS  PubMed  Google Scholar 

  18. Wang L, Hauenstein AV. The NLRP3 inflammasome: mechanism of action, role in disease and therapies. Mol Aspects Med 2020;76:100889.

    Article  CAS  PubMed  Google Scholar 

  19. Lv HM, Liu QM, Wen ZM, Feng HH, Deng XM, Ci XX. Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis. Redox Biology 2017;12:311–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moretti J, Blander JM. Increasing complexity of NLRP3 inflammasome regulation. J Leukoc Biol 2021;109:561–571.

    Article  CAS  PubMed  Google Scholar 

  21. Tsubaki H, Tooyama I, Walker DG. Thioredoxin-interacting protein (TXNIP) with focus on brain and neurodegenerative diseases. Int J Mol Sci 2020;21:9357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yuan JY, Fu Y, Feng ZH, Sang F, Shao MY, Li LL. Potential mechanisms and effects of Chinese medicines in treatment of diabetic atherosclerosis by modulating NLRP3 inflammasome: a narrative review. Chin J Integr Med 2022;28:753–761.

    Article  CAS  PubMed  Google Scholar 

  23. Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China 2020. Beijing: China Medical Science and Technology Press;2020:402–403.

    Google Scholar 

  24. Hao JF, Cheng Y. The overview of the pharmacology research in Moschus (musk). Lishizhen Med Meter Med Res (Chin) 2004;15:248–249.

    Google Scholar 

  25. Liu K, Xie L, Deng M, Zhang X, Luo J, Li X. Zoology, chemical composition, pharmacology, quality control and future perspective of musk (Moschus): a review. Chin Med 2021;16:46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhu XY, Wang WJ, Xu GF, Yang YL, Sun SM, Xue LM. The pahrmacological activities of musk II. the anti-inflammatory activity of the active components of musk. Acta Pharmaceuica Sinca (Chin) 1988;23:406–410.

    CAS  Google Scholar 

  27. Oray M, Abu Samra K, Ebrahimiadib N, Meese H, Foster CS. Long-term side effects of glucocorticoids. Expert Opin Drug Saf 2016;15:457–465.

    Article  CAS  PubMed  Google Scholar 

  28. Daliri EB, Lee BH, Oh DH. Current trends and perspectives of bioactive peptides. Crit Rev Food Sci Nutr 2018;58:2273–2284.

    Article  CAS  PubMed  Google Scholar 

  29. Erak M, Bellmann-Sickert K, Els-Heindl S, Beck-Sickinger AG. Peptide chemistry toolbox-transforming natural peptides into peptide therapeutics. Bioorg Med Chem 2018;26:2759–2765.

    Article  CAS  PubMed  Google Scholar 

  30. Xu ZW, Cai F, Li HJ, Li SX, Xie YT, Zhai YJ. Optimization of extraction process of polypeptides from Moschus by orthogonal design. Chin J Exp Tradit Med Form (Chin) 2014;20:23–25.

    Google Scholar 

  31. Zhu XY, Xu GF, Zhang ZJ. The pharmacological effects of musk I. the anti-inflammatory effect of musk on croton oil-induced ear inglammation in mice. Acta Pharm Sin (Chin) 1979;14:685–687.

    CAS  Google Scholar 

  32. Liu XM, Li HQ, Xiao X, Yu DQ. Studies on the anti-inflammatory protein of musk i. isolation, purification and properties. Acta Zool Sin (Chin) 1992;38:302–308.

    CAS  Google Scholar 

  33. Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunolog Rev 2017;277:61–75.

    Article  CAS  Google Scholar 

  34. Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 2019;19:477–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther 2020;5:209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pan M, Zhang F, Qu K, Liu C, Zhang J. TXNIP: a double-edged sword in disease and therapeutic outlook. Oxid Med Cell Longev;2022:7805115.

  37. Chen M, Li W, Zhang Y, Yang J, Yang J. MicroRNA-20a protects human aortic endothelial cells from Ox-LDL-induced inflammation through targeting TLR4 and TXNIP signaling. Biomed Pharmacother 2018;103:191–197.

    Article  CAS  PubMed  Google Scholar 

  38. Wang Y, Wang Y, Bharti V, Zhou H, Hoi V, Tan H, et al. Upregulation of thioredoxin-interacting protein in brain of amyloid-β protein precursor/presenilin 1 transgenic mice and amyloid-β treated neuronal cells. J Alzheimer’s Dis 2019;72:139–150.

    Article  CAS  Google Scholar 

  39. Szpigel A, Hainault I, Carlier A, Venteclef N, Batto AF, Hajduch E, et al. Lipid environment induces ER stress, TXNIP expression and inflammation in immune cells of individuals with type 2 diabetes. Diabetologia 2018;61:399–412.

    Article  CAS  PubMed  Google Scholar 

  40. Li N, Zhou H, Wu H, Wu Q, Duan M, Deng W, et al. STINGIRF3 contributes to lipopolysaccharide-induced cardiac dysfunction, inflammation, apoptosis and pyroptosis by activating NLRP3. Redox Biol 2019;24:101215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mohamed IN, Li L, Ismael S, Ishrat T, El-Remessy AB. Thioredoxin interacting protein, a key molecular switch between oxidative stress and sterile inflammation in cellular response. World J Diabetes 2021;12:1979–1999.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci 2019;20:3328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Yi J conducted all experiments and wrote this manuscript. Li L, Yin ZJ and Zhao JN contributed to the ideas and design of the study and revised this manuscript. Tan RR, Zeng J and Li Y took part in preparation of PPM including extraction, purification and freeze drying. Quan YY and Chen SL contributed to the sample collection in animal experiments. Lang JR, Li J and Sun ZJ helped in HE and IHC. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Jun-ning Zhao.

Ethics declarations

The authors declare that there are no conflicts of interest regarding the publication of this article, including Sichuan Fengchun Pharmaceutical Co., Ltd.

Additional information

Supported by the Establishment of Key Disciplines of Traditional Chinese Medicine in Sichuan Province—Pharmacology of Chinese Materia Medica (No. 2020ZDXK01) and the Systemic Research and Development of Moschus (No. D-2019-6 and D-2019-8)

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, J., Li, L., Yin, Zj. et al. Polypeptide from Moschus Suppresses Lipopolysaccharide-Induced Inflammation by Inhibiting NF-κ B-ROS/NLRP3 Pathway. Chin. J. Integr. Med. 29, 895–904 (2023). https://doi.org/10.1007/s11655-023-3598-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-023-3598-z

Keywords

Navigation