Skip to main content

Advertisement

Log in

Progress on Regulation of NLRP3 Inflammasome by Chinese Medicine in Treatment of Ulcerative Colitis

  • Review
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Ulcerative colitis (UC) is a chronic, non-specific intestinal disease that not only affects the quality of life of patients and their families but also increases the risk of colorectal cancer. The nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome is an important component of inflammatory response system, and its activation induces an inflammatory cascade response that is involved in the development and progression of UC by releasing inflammatory cytokines, damaging intestinal epithelial cells, and disrupting the intestinal mucosal barrier. Chinese medicine (CM) plays a vital role in the prevention and treatment of UC and is able to regulate NLRP3 inflammasome. Many experimental studies on the regulation of NLRP3 inflammasome mediated by CM have been carried out, demonstrating that CM formulae with main effects of clearing heat, detoxifying toxicity, drying dampness, and activating blood circulation. Flavonoids and phenylpropanoids can effectively regulate NLRP3 inflammasome. Other active components of CM can interfere with the process of NLRP3 inflammasome assembly and activation, leading to a reduction in inflammation and UC symptoms. However, the reports are relatively scattered and lack systematic reviews. This paper reviews the latest findings regarding the NLRP3 inflammasome activation-related pathways associated with UC and the potential of CM in treating UC through modulation of NLRP3 inflammasome. The purpose of this review is to explore the possible pathological mechanisms of UC and suggest new directions for development of therapeutic tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ling W, Tao JH, Chen YF, et al. Lizhong Decoction ameliorates ulcerative colitis in mice via regulation of plasma and urine metabolic profiling. Chin J Integr Med 2022;28:1015–1022.

    Article  Google Scholar 

  2. Ungaro R, Mehandru S, Allen PB, et al. Ulcerative colitis. Lancet 2017;389:1756–1770.

    Article  PubMed  Google Scholar 

  3. Zhang T, Zhang B, Tian W, et al. Research trends in ulcerative colitis: a bibliometric and visualized study from 2011 to 2021. Front Pharmacol 2022;13:951004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang L, Xiong S, Jin FC, et al. Global trends in intestinal flora and ulcerative colitis research during the past 10 years: a bibliometric analysis. Front Microbiol 2022;13:1003905.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yang ZH, Lin SS, Feng WY, et al. A potential therapeutic target in traditional Chinese medicine for ulcerative colitis: macrophage polarization. Front Pharmacol 2022;13:999179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gu LM, Li H, Xia JQ, et al. Huangqin Decoction attenuates DSS-induced mucosal damage and promotes epithelial repair via inhibiting TNF- α -induced NF- κ B activation. Chin J Integr Med 2022;28:124–129.

    Article  CAS  PubMed  Google Scholar 

  7. Hu SY, Wei PF, Li W, et al. Pharmacological effects of berberine on models of ulcerative colitis: a meta-analysis and systematic review of animal studies. Front Pharmacol 2022;13:937029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li T, Gao XJ, Yan ZX, et al. Understanding the tonifying and the detoxifying properties of Chinese medicines from their impacts on gut microbiota and host metabolism: a case study with four medicinal herbs in experimental colitis rat model. Chin Med 2022;17:118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yuan JY, Fu Y, Feng ZH, et al. Potential mechanisms and effects of Chinese medicines in treatment of diabetic atherosclerosis by modulating NLRP3 inflammasome: a narrative review. Chin J Integr Med 2022;28:753–761.

    Article  CAS  PubMed  Google Scholar 

  10. Blevins HM, Xu Y, Biby S, et al. The NLRP3 inflammasome pathway: a review of mechanisms and inhibitors for the treatment of inflammatory diseases. Front Aging Neurosci 2022;14:879021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee SH, Kwon JE, Cho ML. Immunological pathogenesis of inflammatory bowel disease. Intest Res 2018;16:26–42.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang Y, Li JX, Shi L. Clinical application of Xuanfu theory in differentiation treatment of ulcerative colitis. China J Inf Tradit Chin Med (Chin) DOI: https://doi.org/10.19879/j.cnki.1005-5304.

  13. Seoane PI, Lee B, Hoyle C, et al. The NLRP3-inflammasome as a sensor of organelle dysfunction. J Cell Biol 2020;219:e202006194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Elliott EI, Sutterwala FS. Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol Rev 2015;265:35–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kelley N, Jeltema D, Duan Y, et al. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci 2019;20:3328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu QY, Sun WC, Zhang J, et al. Inflammasome-targeting natural compounds in inflammatory bowel disease: mechanisms and therapeutic potential. Front Immunol 2022;13:963291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhen Y, Zhang H. NLRP3 inflammasome and inflammatory bowel disease. Front Immunol 2019;10:276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xiao JQ, Sun K, Wang C, et al. Compound loss of GSDMD and GSDME function is necessary to achieve maximal therapeutic effect in colitis. J Transl Autoimmun 2022;5:100162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bauernfeind FG, Horvath G, Stutz A, et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 2009;183:787–791.

    Article  CAS  PubMed  Google Scholar 

  20. Shen P, Zhang ZC, Zhu KP, et al. Evodiamine prevents dextran sulfate sodium-induced murine experimental colitis via the regulation of NF-kappaB and NLRP3 inflammasome. Biomed Pharmacother 2019;110:786–795.

    Article  CAS  PubMed  Google Scholar 

  21. Ge H, Tang H, Liang YB, et al. Rhein attenuates inflammation through inhibition of NF-kappaB and NALP3 inflammasome in vivo and in vitro. Drug Des Devel Ther 2017;11:1663–1671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang ZP, Li QY, Yu ZQ, et al. Mechanism of Chaishao Liujunzi Decoction in treatment of ulcerative colitis through TLR4/MyD88/NF-κ B signaling pathway. Chin J Exper Tradit Med Formul (Chin) 2022;28:17–23.

    Google Scholar 

  23. Jia R. Study on the mechanism of action of Wu Mei Pill based on Notch/NF- κ B/NLRP3 signaling pathway to inhibit macrophage activation in the treatment of ulcerative colitis [Dissertation]. Xi’an: Shaanxi University of Traditional Chinese Medicine;2021.

    Google Scholar 

  24. Li XY, Yang YT, Zhao Y, et al. Moxibustion inhibits the expression of colonic NLRP3 through miR7/RNF183/NF-kappaB signaling pathway in UC rats. Evid Based Complement Alternat Med 2021;2021:6519063.

    PubMed  PubMed Central  Google Scholar 

  25. Takahashi Y, Masuda H, Ishii Y, et al. Decreased expression of thioredoxin interacting protein mRNA in inflamed colonic mucosa in patients with ulcerative colitis. Oncol Rep 2007;18:531–535.

    CAS  PubMed  Google Scholar 

  26. Miao JX. Exploring the therapeutic effects of Huangqin Decoction in rats with ulcerative colitis via the PINK1/Parkin mitochondrial autophagy pathway [Dissertation]. Harbin: Heilongjiang University of Traditional Chinese Medicine;2021.

    Google Scholar 

  27. Wagatsuma K, Nakase H. Contradictory effects of NLRP3 inflammasome regulatory mechanisms in colitis. Int J Mol Sci 2020;21:8145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Saber S, Abd El-Fattah EE, Yahya G, et al. A novel combination therapy using rosuvastatin and Lactobacillus combats dextran sodium sulfate-induced colitis in high-fat diet-fed rats by targeting the TXNIP/NLRP3 interaction and influencing gut microbiome composition. Pharmaceuticals (Basel) 2021;14:341.

    Article  CAS  PubMed  Google Scholar 

  29. Wang DL, Lu AN, Zheng HB, et al. Mechanism of Shaoyao Decoction on attenuating ulcerative colitis by regulating TXNIP/NLRP3 pathway. Chin J Tradit Med 2021;36:3240–3245.

    CAS  Google Scholar 

  30. Liu Q, Zuo R, Wang K, et al. Oroxindin inhibits macrophage NLRP3 inflammasome activation in DSS-induced ulcerative colitis in mice via suppressing TXNIP-dependent NF-kappaB pathway. Acta Pharmacol Sin 2020;41:771–781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang R, Luo Y, Lu Y, et al. Maggot extracts alleviate inflammation and oxidative stress in acute experimental colitis via the activation of Nrf2. Oxid Med Cell Longev 2019;2019:4703253.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Baird L, Lleres D, Swift S, et al. Regulatory flexibility in the Nrf2-mediated stress response is conferred by conformational cycling of the Keap1-Nrf2 protein complex. Proc Natl Acad Sci USA 2013;110:15259–15264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fernandez-Ortiz M, Sayed RKA, Fernandez-Martinez J, et al. Melatonin/Nrf2/NLRP3 connection in mouse heart mitochondria during aging. Antioxidants (Basel) 2020;9:1187.

    Article  CAS  PubMed  Google Scholar 

  34. Cheng JJ, Ma XD, Zhang HT, et al. 8-Oxypalmatine, a novel oxidative metabolite of palmatine, exhibits superior anticolitis effect via regulating Nrf2 and NLRP3 inflammasome. Biomed Pharmacother 2022;153:113335.

    Article  CAS  PubMed  Google Scholar 

  35. Chao LM, Lin J, Zhou J, et al. Polyphenol rich Forsythia suspensa extract alleviates DSS-induced ulcerative colitis in mice through the Nrf2-NLRP3 pathway. Antioxidants (Basel) 2022;11:475.

    Article  CAS  PubMed  Google Scholar 

  36. Cuny GD, Degterev A. RIPK protein kinase family: atypical lives of typical kinases. Sem Cell Dev Biol 2021;109:96–105.

    Article  CAS  Google Scholar 

  37. Cuchet-Lourenco D, Eletto D, Wu C, et al. Biallelic RIPK1 mutations in humans cause severe immunodeficiency, arthritis, and intestinal inflammation. Science 2018;361:810–813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu ZY, Wu B, Guo YS, et al. Necrostatin-1 reduces intestinal inflammation and colitis-associated tumorigenesis in mice. Am J Cancer Res 2015;5:3174–3185.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu ZY, Zheng M, Li YM, et al. RIP3 promotes colitis-associated colorectal cancer by controlling tumor cell proliferation and CXCL1-induced immune suppression. Theranostics 2019;9:3659–3673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu C, Yang HJ, Han CP, et al. Quyu Shengxin Decoction alleviates DSS-induced ulcerative colitis in mice by suppressing RIP1/RIP3/NLRP3 signalling. Evid Based Complement Alternat Med 2021;2021:6682233.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wu C, Han CP, Wang QM, et al. Mechanism of Quyushengxin Decoction for treating ulcerative colitis in mice: the role of RIP1/RIP3/NLRP3 pathway. China J Integr Chin West Med Dig (Chin) 2021;29:117–123.

    Google Scholar 

  42. Cui HT, Cai YZ, Wang L, et al. Berberine regulates Treg/Th17 balance to treat ulcerative colitis through modulating the gut microbiota in the colon. Front Pharmacol 2018;9:571.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gao X, Cao Q, Cheng Y, et al. Chronic stress promotes colitis by disturbing the gut microbiota and triggering immune system response. Proc Natl Acad Sci USA 2018;115:E2960–E2969.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhang M, Sun KJ, Wu YJ, et al. Interactions between intestinal microbiota and host immune response in inflammatory bowel disease. Front Immunol 2017;8:942.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Seo SU, Kamada N, Munoz-Planillo R, et al. Distinct commensals induce interleukin-1beta via NLRP3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury. Immunity 2015;42:744–755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. De la Fuente M, Franchi L, Araya D, et al. Escherichia coli isolates from inflammatory bowel diseases patients survive in macrophages and activate NLRP3 inflammasome. Int J Med Microbiol 2014;304:384–392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xue SG, Xue Y, Dou DB, et al. Kui Jie Tong ameliorates ulcerative colitis by regulating gut microbiota and NLRP3/Caspase-1 classical pyroptosis signaling pathway. Dis Markers 2022;2022:2782112.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhou Y, Chen S, Gu WX, et al. Sinomenine hydrochloride ameliorates dextran sulfate sodium-induced colitis in mice by modulating the gut microbiota composition whilst suppressing the activation of the NLRP3 inflammasome. Exp Ther Med 2021;22:1287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tan PF, Li XG, Shen J, et al. Fecal microbiota transplantation for the treatment of inflammatory bowel disease: an update. Front Pharmacol 2020;11:574533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Qu YF. Study on the intestinal microecological mechanism of kaempferol to alleviate ulcerative colitis in mice [Dissertation]. Hohhot: Inner Mongolia Medical University;2021.

    Google Scholar 

  51. Deng Z, Ni JJ, Wu XY, et al. GPA peptide inhibits NLRP3 inflammasome activation to ameliorate colitis through AMPK pathway. Aging (Albany NY) 2020;12:18522–18544.

    Article  CAS  PubMed  Google Scholar 

  52. Cosin-Roger J, Simmen S, Melhem H, et al. Hypoxia ameliorates intestinal inflammation through NLRP3/mTOR downregulation and autophagy activation. Nat Commun 2017;8:98.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Youssef ME, Abd El-Fattah EE, Abdelhamid AM, et al. Interference with the AMPKα/mTOR/NLRP3 signaling and the IL-23/IL-17 axis effectively protects against the dextran sulfate sodium intoxication in rats: a new paradigm in empagliflozin and metformin reprofiling for the management of ulcerative colitis. Front Pharmacol 2021;12:719984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhou J, Huang S, Wang ZY, et al. Targeting EZH2 histone methyltransferase activity alleviates experimental intestinal inflammation. Nat Commun 2019;10:2427.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lv Q, Xing Y, Liu J, et al. Lonicerin targets EZH2 to alleviate ulcerative colitis by autophagy-mediated NLRP3 inflammasome inactivation. Acta Pharm Sin B 2021;11:2880–2899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kalla R, Ventham NT, Kennedy NA, et al. MicroRNAs: new players in IBD. Gut 2015;64:504–517.

    Article  CAS  PubMed  Google Scholar 

  57. Xie CY, Xie G, Ji YZ. Naringenin inhibits NLRP3 inflammasome through miR-22 and reduces intestinal barrier damage in a rat model of ulcerative colitis. Chin J Pathophysiol (Chin) 2021;37:1573–1581.

    Google Scholar 

  58. Wu X, Pan SY, Luo WW, et al. Roseburia intestinalis derived flagellin ameliorates colitis by targeting miR2233p mediated activation of NLRP3 inflammasome and pyroptosis. Mol Med Rep 2020;22:2695–2704.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Wu XH. The regulation of NLRP3 inflammatory vesicles in macrophages by IRF3 and its mechanism [Dissertation]. Nanjing: Nanjing University of Traditional Chinese Medicine;2021.

    Google Scholar 

  60. Chen YM, Wu D, Sun LJ. Clinical significance of high-mobility group box 1 protein (HMGB1) and Nod-like receptor protein 3 (NLRP3) in patients with ulcerative colitis. Med Sci Monit 2020;26:e919530.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang S. Molecular mechanism of clock protein REV-ERB α regulation of NLRP3 inflammatory vesicles and ulcerative colitis [Dissertation]. Guangzhou: Jinan University;2019.

    Google Scholar 

  62. Zhang JY, Kang XH, Sun MY, et al. Qingre Jianpi Decoction attenuates inflammatory responses by suppressing NOD-like receptor family pyrin domain-containing 3 inflammasome activation in dextran sulfate sodium-induced colitis mice. J Tradit Chin Med (Chin) 2021;41:68–78.

    Google Scholar 

  63. Zhang W, Wang XR, Xu JX, et al. Study on the mechanism of Shaoyao Decoction combined with mesalazine regulate TRL4-ERK1/2-NF- κ B signal pathway in improving ulcerative colitis. J Qiqihar Med Univ (Chin) 2022;43:701–707.

    Google Scholar 

  64. Qiao HX, Huang YH, Chen XY, et al. Jiaweishaoyao Decoction alleviates DSS-induced ulcerative colitis via inhibiting inflammation. Gastroenterol Res Pract 2020;2020:7182874.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Huangfu SH, Dou RJ, Zhong SX, et al. Modified Pulsatillae Decoction inhibits DSS-induced ulcerative colitis in vitro and in vivo via IL-6/STAT3 pathway. BMC Complement Med Ther 2020;20:179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen ZS, He YH. Pharmacological investigation of the effects of Bai Shao Qi Wu Granules on the regulation of UC in NLRP3 knockout rats. Lishizhen Med Mater Med Res (Chin) 2022;33:813–817.

    Google Scholar 

  67. Zeng YH, Yang F, He YH. Study on the regulation of NLRP3 inflammasome-mediated ulcerative colitis by Bai Shao Qi Wu Granules. Lishizhen Med Mater Med Res (Chin) 2019;30:782–785.

    Google Scholar 

  68. Yin XW. Study on the effect of enema with added flavor Sanhuang Decoction on NLRP3/Caspase-1/IL-1 β in rats with experimental ulcerative colitis [Dissertation]. Beijing: Beijing University of Traditional Chinese Medicine;2021.

    Google Scholar 

  69. Yan SG, Wang P, Wei HL, et al. Treatment of ulcerative colitis with Wu-Mei-Wan by inhibiting intestinal inflammatory response and repairing damaged intestinal mucosa. Phytomedicine 2022;105:154362.

    Article  CAS  PubMed  Google Scholar 

  70. Liu YH, Rong ZL, Zhu HY, et al. Mechanism of Shenling Baizhu Powder on treatment of ulcerative colitis based on NLRP3 inflammatory. China J Chin Mater Med (Chin) 2022;47:5863–5871.

    Google Scholar 

  71. Wang JJ, Chi L, Wang WJ, et al. Influence of Shenling Baizhu Powder on mRNA expression of NLRP3, NF- κ B, MUC2, TFF3 in rats of ulcerative colitis. World J Integr Tradit West Med (Chin) 2019;14:1638–1641.

    Google Scholar 

  72. Wu N, Wan ZP, Han L, et al. Effect of Huangqin Decoction on pyroptosis pathway of NLRP3/caspase-1 in mice with ulcerative colitis. China J Chin Mater Med (Chin) 2021;46:1191–1196.

    Google Scholar 

  73. Liu HZ, Wu BS, Wang BS, et al. Huangkui Lianyang Prescription ameliorates DSS-induced ulcerative colitis mice by inhibiting NLRP3 inflammasome. China Arch Tradit Chin Med (Chin) 2022;40:146–151,279–283.

    CAS  Google Scholar 

  74. Liu HZ. Study on the efficacy of Huangkui Lianyang Prescription in treating ulcerative colitis and its mechanism of action [Dissertation]. Nanjing: Nanjing University of Traditional Chinese Medicine;2021.

    Google Scholar 

  75. Xia ZJ, Li YT, Liu XL, et al. Mechanism of Huai Jiang Fang against ulcerative colitis injury via regulating NLRP3/Caspase-1 pathway. Chin Tradit Herb Drugs 2021;52:7221–7228.

    Google Scholar 

  76. Zhao Z, Liu L, Song N, et al. Effect of Banxia Xiexintang on NLRP3/Caspase-1 pyroptosis pathway in rats with ulcerative colitis. Chin J Exp Tradit Med Formul (Chin) 2022;28:29–34.

    Google Scholar 

  77. Qi Y, Yuan ZW, Wan CP, et al. Study on influence of Kuijiekang Decoction on NLRP3 inflammasome and its downstream inflammatory cytokines in mice with ulcerative colitis. China Arch Tradit Chin Med (Chin) 2020;38:229–233,275–278.

    CAS  Google Scholar 

  78. Ye B, Lai LQ. A study on the therapeutic effect of YST on 2,4,6-tritrobenzene sulfonic acid-induced colitis in mice. Chin J Health Inspect (Chin) 2022;32:1676–1680.

    Google Scholar 

  79. Deng JP. The effect of Hechang Decoction on NLRP3 and NLRP6 inflammasome signaling pathway in rats with ulcerative colitis [Dissertation]. Hangzhou: Zhejiang University of Traditional Chinese Medicine;2019.

    Google Scholar 

  80. Guo TH, Li YY, Hong SW, et al. Evidence for anticancer effects of Chinese medicine monomers on colorectal cancer. Chin J Integr Med 2022;28:939–952.

    Article  PubMed  Google Scholar 

  81. Yue CC, Yang XD, Li J, et al. Intervention of rutin on mice with ulcerative colitis and its influence on NLRP3 inflammasome. Modern J Integr Tradit Chin West Med (Chin) 2021;30:1073–1078.

    Google Scholar 

  82. Ai GX, Huang ZW, Cheng JJ, et al. Gut microbiota-mediated transformation of coptisine into a novel metabolite 8-oxocoptisine: insight into its superior anti-colitis effect. Front Pharmacol 2021;12:639020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li PZ. Study on the mechanism of intestinal microecology of root barking to alleviate ulcerative colitis in mice [Dissertation]. Urumqi: Xinjiang Medical College;2020.

    Google Scholar 

  84. Liu JX, Cai JP, Fan P, et al. The abilities of salidroside on ameliorating inflammation, skewing the imbalanced nucleotide oligomerization domain-like receptor family pyrin domain containing 3/autophagy, and maintaining intestinal barrier are profitable in colitis. Front Pharmacol 2019;10:1385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang WW, Wang WS, Shen CZ, et al. Network pharmacology for systematic understanding of schisandrin B reduces the epithelial cells injury of colitis through regulating pyroptosis by AMPK/Nrf2/NLRP3 inflammasome. Aging (Albany NY) 2021;13:23193–23209.

    Article  CAS  PubMed  Google Scholar 

  86. Qian B, Wang CQ, Zeng Z, et al. Ameliorative effect of sinapic acid on dextran sodium sulfate (DSS)-induced ulcerative colitis in Kunming (KM) mice. Oxid Med Cell Longev 2020;2020:8393504.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ding WW. Study on the balance of autophagy and NLRP3 targeting by wogonin to improve ulcerative colitis [Dissertation]. Nanjing: Nanjing University;2020.

    Google Scholar 

  88. Marinho S, Illanes M, Avila-Roman J, et al. Anti-inflammatory effects of rosmarinic acid-loaded nanovesicles in acute colitis through modulation of NLRP3 inflammasome. Biomolecules 2021;11:162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yang N, Xia ZL, Shao NY, et al. Carnosic acid prevents dextran sulfate sodium-induced acute colitis associated with the regulation of the Keap1/Nrf2 pathway. Sci Rep 2017;7:11036.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Han HW, Sun WX, Feng L, et al. Differential relieving effects of shikonin and its derivatives on inflammation and mucosal barrier damage caused by ulcerative colitis. Peer J 2021;9:e10675.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Liu Q, Luo X, Luo S, et al. Paeoniflorin prevent colonic inflammation via inhibiting NLRP3 inflammasome. Tradit Chin Drug Res Clin Pharmacol (Chin) 2018;29:409–414.

    CAS  Google Scholar 

  92. Zhang ZC, Shen P, Lu XJ, et al. In vivo and in vitro study on the efficacy of terpinen-4-ol in dextran sulfate sodium-induced mice experimental colitis. Front Immunol 2017;8:558.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Ma FX, Ke YF, Zhong JH, et al. Effect of Tripterygium Wilfordii polycoride on the NOXs-ROS-NLRP3 inflammasome signaling pathway in mice with ulcerative colitis. Evid Based Complement Alternat Med 2019;2019:9306283.

    Google Scholar 

  94. Yuan L, Lian ZS, Luo LT, et al. Xinhui citrus fermentation liquor ameliorates acute ulcerative colitis in mice via regulating intestinal bacteria homeostasis and Nrf2/NLRP3 pathway to repair intestinal mucosa. Acta Pharma Sini:1–23 [2022-11-25]. DOI:https://doi.org/10.16438/j.0513-4870.2022-0704.

  95. Dai WB, Zhan XY, Peng WJ, et al. Ficus pandurata Hance inhibits ulcerative colitis and colitis-associated secondary liver damage of mice by enhancing antioxidation activity. Oxid Med Cell Longev 2021;2021:2617881.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wu BS, Zhou Q, He ZQ, et al. Protective effect of the Abelmoschus manihot flower extract on DSS-induced ulcerative colitis in mice. Evid Based Complement Alternat Med 2021;2021:7422792.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Sun HX and Zhu Y made significant contribution to the work in the conception, study design, or in all these areas; took part in drafting, revising, or reviewing the article and gave the approval of the final version of the manuscript.

Corresponding author

Correspondence to Ying Zhu.

Additional information

Conflict of Interest

The authors declare that they have no conflicts of interest regarding the publication of this paper.

Supported by the National Natural Science Foundation of China (No. 81874466), Hunan Clinical Medical Technology Innovation Guidance Project (No. 2021SK51406) and Hunan University of Chinese Medicine Postgraduate Innovation Project (No. 2022CX35)

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Hx., Zhu, Y. Progress on Regulation of NLRP3 Inflammasome by Chinese Medicine in Treatment of Ulcerative Colitis. Chin. J. Integr. Med. 29, 750–760 (2023). https://doi.org/10.1007/s11655-023-3551-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-023-3551-1

KeyWords

Navigation