Skip to main content

Advertisement

Log in

Efficacy of Biejiajian Pill on Intestinal Microbiota in Patients with Hepatitis B Cirrhosis/Liver Fibrosis: A Randomized Double-Blind Controlled Trial

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To analyze the efficacy of Biejiajian Pill (BJJP) on intestinal microbiota in patients with hepatitis B cirrhosis/liver fibrosis, and explore its relationship with liver fibrosis.

Methods

This was a prospective, randomized double-blind controlled trial. Using the stratified block randomization method, 35 patients with hepatitis B liver cirrhosis/liver fibrosis were randomly assigned (1:1) to receive entecavir (0.5 mg/d) combined with BJJP (3 g/time, 3 times a day) or placebo (simulator as control, SC group, simulator 3 g/time, 3 times a day) for 48 weeks. Blood and stool samples were collected from patients at baseline and week 48 of treatment, respectively. Liver and renal functions as well as hematological indices were detected. Fecal samples were analyzed by 16S rDNA V3–V4 high-throughput sequencing, and intestinal microbiota changes in both groups before and after treatment were compared, and their correlations with liver fibrosis were analyzed.

Results

Compared with the SC group, there was no significant difference in liver function, renal function and hematology indices in the BJJP group, however, the improvement rate of liver fibrosis was higher in the BJJP group (94.4% vs. 64.7%, P=0.041). Principal coordinate analysis (PCoA) based on weighted Unifrac distance showed significant differences in intestinal microbiota community diversity before and after BJJP treatment (P<0.01 and P=0.003), respectively. After 48 weeks’ treatment, the abundance levels of beneficial bacteria (Bifidobacteria, Lactobacillus, Faecalibacterium and Blautia) increased, whereas the abundance levels of potential pathogenic bacteria, including Escherichia coli, Bacteroides, Ruminococcus, Parabacteroides and Prevotella decreased, among which Ruminococcus and Parabacteroides were significantly positively correlated with degree of liver fibrosis (r=0.34, P=0.04; r=0.38, P=0.02), respectively. The microbiota in the SC group did not change significantly throughout the whole process of treatment.

Conclusion

BJJP had a certain regulatory effect on intestinal microbiota of patients with hepatitis B cirrhosis/liver fibrosis (ChiCTR1800016801).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol 2021;18:151–166.

    PubMed  Google Scholar 

  2. Chang TT, Liaw YF, Wu SS, et al. Long-term entecavir therapy results in the reversal of fibrosis/cirrhosis and continued histological improvement in patients with chronic hepatitis B. Hepatology 2010;52:886–893.

    CAS  PubMed  Google Scholar 

  3. Liaw YF. Reversal of cirrhosis: an achievable goal of hepatitis B antiviral therapy. J Hepatol 2013;59:880–881.

    PubMed  Google Scholar 

  4. Marcellin P, Gane E, Buti M, et al. Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study. Lancet 2013;381:468–475.

    CAS  PubMed  Google Scholar 

  5. Xu B, Lin L, Xu G, et al. Long-term lamivudine treatment achieves regression of advanced liver fibrosis/cirrhosis in patients with chronic hepatitis B. J Gastroenterol Hepatol 2015;30:372–378.

    CAS  PubMed  Google Scholar 

  6. Wong VW, Chan FK. Regression of cirrhosis with long-term tenofovir treatment. Gastroenterology 2013;145:481–482.

    PubMed  Google Scholar 

  7. Lu H, Wu Z, Xu W, et al. Intestinal microbiota was assessed in cirrhotic patients with hepatitis B virus infection. Intestinal microbiota of HBV cirrhotic patients. Microb Ecol 2011;61:693–703.

    PubMed  Google Scholar 

  8. Henao-Mejia J, Elinav E, Thaiss CA, et al. Role of the intestinal microbiome in liver disease. J Autoimmun 2013;46:66–73.

    CAS  PubMed  Google Scholar 

  9. Zhou R, Fan X, Schnabl B. Role of the intestinal microbiome in liver fibrosis development and new treatment strategies. Transl Res 2019;209:22–38.

    CAS  PubMed  Google Scholar 

  10. Wang J, Wang Y, Zhang X, et al. Gut microbial dysbiosis is associated with altered hepatic functions and serum metabolites in chronic hepatitis B patients. Front Microbiol 2017;8:2222.

    PubMed  PubMed Central  Google Scholar 

  11. Chen Z, Xie Y, Zhou F, et al. Featured gut microbiomes associated with the progression of chronic hepatitis B disease. Front Microbiol 2020;11:383.

    PubMed  PubMed Central  Google Scholar 

  12. Yang XA, Lv F, Wang R, et al. Potential role of intestinal microflora in disease progression among patients with different stages of hepatitis B. Gut Pathog 2020;12:50.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Trebicka J, Bork P, Krag A, et al. Utilizing the gut microbiome in decompensated cirrhosis and acute-on-chronic liver failure. Nat Rev Gastroenterol Hepatol 2021;18:167–180.

    PubMed  Google Scholar 

  14. Albillos A, Gottardi A, Rescigno M. The gut-liver axis in liver disease: pathophysiological basis for therapy. J Hepatol 2019;72:558–577.

    PubMed  Google Scholar 

  15. Yan Z, Yang F, Hong Z, et al. Blueberry attenuates liver fibrosis, protects intestinal epithelial barrier, and maintains gut microbiota homeostasis. Can J Gastroenterol Hepatol 2019;2019:5236149.

    PubMed  PubMed Central  Google Scholar 

  16. Liu Y, Chen K, Li F, et al. Probiotic Lactobacillus rhamnosus GG prevents liver fibrosis through inhibiting hepatic bile acid synthesis and enhancing bile acid excretion in mice. Hepatology 2020;71:2050–2066.

    CAS  PubMed  Google Scholar 

  17. Wan S, Luo F, Huang C, et al. Ursolic acid reverses liver fibrosis by inhibiting interactive NOX4/ROS and RhoA/ROCK1 signalling pathways. Aging (Albany NY) 2020;12:10614–10632.

    CAS  PubMed  Google Scholar 

  18. Sun J, Chen W, Wen B, et al. Biejiajian Pill inhibits carcinogenesis and metastasis via the Akt/GSK-3 β/Snail signaling pathway in hepatocellular carcinoma. Front Pharmacol 2021;12:610158.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang T, Yang Y, Wang B, et al. Meta-analysis of influences of Biejiajian Pill combined with entecavir on serum liver fibrosis markers of compensatory period of hepatitis b cirrhosis: protocol of systematic review and meta-analysis. Medicine (Baltimore) 2019;98:e18458.

    CAS  PubMed  Google Scholar 

  20. China Association of Chinese Medcine. Expert consensus on the clinical application of Biejiajian Pill in the treatment of liver fibrosis. Chin J Integr Tradit West Med Liver Dis (Chin) 2020;30:I0004,I0010.

    Google Scholar 

  21. Bai GP, Zang RH, Yan GH, et al. The effect of modified turtle shell Decoction on the expression of TGFβ 1, Smad3 and Smad7 in rat hepatic stellate cell. Immun J (Chin) 2017;33:777–782.

    Google Scholar 

  22. Chen GX, Wen B, Sun HT, et al. Effect of Biejiajian Wan on NF- κ B signaling pathway in rat hepatic fibrosis model Induced by CCl4. Chin J Exper Tradit Med Formu (Chin) 2018;24:161–167.

    CAS  Google Scholar 

  23. Cao XQ, Dong WZ, Wang L, et al. Effect of Biejiajian Pill on PKC-Pyk2/SRC pathway in HSC-LX2 cell 36718 induced by Ang II -ROS. J Zhejiang Chin Med Univer (Chin) 2019;43:297–304.

    CAS  Google Scholar 

  24. Wan S, Huang C, Wang A, et al. Ursolic acid improves the bacterial community mapping of the intestinal tract in liver fibrosis mice. Peer J 2020;8:e9050.

    PubMed  PubMed Central  Google Scholar 

  25. Han C, Wu X, Zou N, et al. Cichorium pumilum Jacq extract inhibits LPS-induced inflammation via MAPK signaling pathway and protects rats from hepatic fibrosis caused by abnormalities in the gut-liver axis. Front Pharmacol 2021;12:683613.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu YT, Qi SL, Sun KW. Traditional Chinese medicine, liver fibrosis, intestinal flora: is there any connection? a narrative review. Ann Palliat Med 2021;10:4846–4857.

    PubMed  Google Scholar 

  27. Shin NR, Gu N, Choi HS, et al. Combined effects of Scutellaria baicalensis with metformin on glucose tolerance of patients with type 2 diabetes via gut microbiota modulation. Am J Physiol Endocrinol Metab 2020;318:E52–E61.

    CAS  PubMed  Google Scholar 

  28. Han YK, Kim H, Shin H, et al. Characterization of anti-inflammatory and antioxidant constituents from Scutellaria baicalensis using LC-MS coupled with a bioassay method. Molecules 2020;25:3617.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Dong Q, Chu F, Wu C, et al. Scutellaria baicalensis Georgi extract protects against alcohol-induced acute liver injury in mice and affects the mechanism of ER stress. Mol Med Rep 2016;13:3052–3062.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Orzechowska BU, Wróbel G, Turlej E, et al. Antitumor effect of baicalin from the Scutellaria baicalensis Radix extract in B-acute lymphoblastic leukemia with different chromosomal rearrangements. Int Immunopharmacol 2020;79:106114.

    CAS  PubMed  Google Scholar 

  31. Jing Y, Li A, Liu Z, et al. Absorption of Codonopsis pilosula saponins by coexisting polysaccharides alleviates gut microbial dysbiosis with dextran sulfate sodium-induced colitis in model mice. Biomed Res Int 2018;2018:1781036.

    PubMed  PubMed Central  Google Scholar 

  32. Li J, Zhang X, Cao L, et al. Three inulin-type fructans from codonopsis pilosula (Franch.) Nannf. roots and their prebiotic activity on Bifidobacterium longum. Molecules 2018; 23:3123.

    PubMed  PubMed Central  Google Scholar 

  33. Li J, Dong L, Liu Y, et al. Stimulation of Codonopsis pilosula Polysaccharide on Bifidobacterium of human gut bacteria in vitro. Evid Based Complement Alternat Med 2021;2021:9524913.

    PubMed  PubMed Central  Google Scholar 

  34. Wu L, Yan Q, Chen F, et al. Bupleuri Radix extract ameliorates impaired lipid metabolism in high-fat diet-induced obese mice via gut microbia-mediated regulation of FGF21 signaling pathway. Biomed Pharmacother 2021;135:111187.

    CAS  PubMed  Google Scholar 

  35. Hou J, Wang G, Wang F, et al. Guideline of prevention and treatment for chronic hepatitis B (2015 update). J Clin Transl Hepatol (Chin) 2017;5:297–318.

    Google Scholar 

  36. Chinese Society of Hepatology, Chinese Medical Association; Chinese Society of Gastroenterology; Chinese Society of Infectious Diseases, Chinese Medical Association. Consensus on the diagnosis and therapy of hepatic fibrosis (2019). Chin J Hepatol (Chin) 2019;27:657–667.

    Google Scholar 

  37. Poynard T, Vergniol J, Ngo Y, et al. Staging chronic hepatitis B into seven categories, defining inactive carriers and assessing treatment impact using a fibrosis biomarker (FibroTest®) and elastography (FibroScan®). J Hepatol 2014;61:994–1003.

    PubMed  Google Scholar 

  38. Milosevic I, Vujovic A, Barac A, et al. Gut-liver axis, gut microbiota, and its modulation in the management of liver diseases: a review of the literature. Int J Mol Sci 2019;20:395.

    PubMed  PubMed Central  Google Scholar 

  39. Tilg H, Cani PD, Mayer EA. Gut microbiome and liver diseases. Gut 2016;65:2035–2044.

    CAS  PubMed  Google Scholar 

  40. Kassa Y, Million Y, Gedefie A, et al. Alteration of gut microbiota and its impact on immune response in patients with chronic HBV infection: a review. Infect Drug Resist 2021;14:2571–2578.

    PubMed  PubMed Central  Google Scholar 

  41. Schnabl B. Linking intestinal homeostasis and liver disease. Curr Opin Gastroenterol 2013;29:264–270.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wei X, Yan X, Zou D, et al. Abnormal fecal microbiota community and functions in patients with hepatitis B liver cirrhosis as revealed by a metagenomic approach. BMC Gastroenterol 2013;13:175.

    PubMed  PubMed Central  Google Scholar 

  43. Zheng H, You Y, Hua M, et al. Chlorophyllin modulates gut microbiota and inhibits intestinal inflammation to ameliorate hepatic fibrosis in mice. Front Physiol 2018;9:1671.

    PubMed  PubMed Central  Google Scholar 

  44. Li MM, Zhou Y, Zuo L, et al. Dietary fiber regulates intestinal flora and suppresses liver and systemic inflammation to alleviate liver fibrosis in mice. Nutrition 2021;81:110959.

    CAS  PubMed  Google Scholar 

  45. Yue SJ, Wang WX, Yu JG, et al. Gut microbiota modulation with traditional Chinese medicine: a system biology-driven approach. Pharmacol Res 2019;148:104453.

    CAS  PubMed  Google Scholar 

  46. Zeng Y, Chen S, Fu Y, et al. Gut microbiota dysbiosis in patients with hepatitis B virus-induced chronic liver disease covering chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. J Viral Hepat 2020;27:143–155.

    CAS  PubMed  Google Scholar 

  47. Liu X, Mao B, Gu J, et al. Blautia–a new functional genus with potential probiotic properties. Gut Microbes 2021;13:1–21.

    PubMed  Google Scholar 

  48. De Filippis F, Pasolli E, Ercolini D. Newly explored Faecalibacterium diversity is connected to age, lifestyle, geography, and disease. Curr Biol 2020;30:4932–4943.e4.

    CAS  PubMed  Google Scholar 

  49. Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 2009;294:1–8.

    CAS  PubMed  Google Scholar 

  50. Trebichavsky I, Rada V, Splichalova A, et al. Cross-talk of human gut with bifidobacteria. Nutr Rev 2009;67:77–82.

    PubMed  Google Scholar 

  51. Tojo R, Suárez A, Clemente MG, et al. Intestinal microbiota in health and disease: role of bifidobacteria in gut homeostasis. World J Gastroenterol 2014;20:15163–15176.

    PubMed  PubMed Central  Google Scholar 

  52. Chen YX, Lai LN, Zhang HY, et al. Effect of artesunate supplementation on bacterial translocation and dysbiosis of gut microbiota in rats with liver cirrhosis. World J Gastroenterol 2016;22:2949–2959.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lanthier N, Rodriguez J, Nachit M, et al. Microbiota analysis and transient elastography reveal new extra-hepatic components of liver steatosis and fibrosis in obese patients. Sci Rep 2021;11:659.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Tang Y, Zhou H, Xiang Y, et al. The diagnostic potential of gut microbiome for early hepatitis B virus-related hepatocellular carcinoma. Eur J Gastroenterol Hepatol 2020; e167–e175.

    Google Scholar 

  55. Tett A, Pasolli E, Masetti G, et al. Prevotella diversity, niches and interactions with the human host. Nat Rev Microbiol 2021;19:585–599.

    CAS  PubMed  Google Scholar 

  56. Chen Y, Ji F, Guo J, et al. Dysbiosis of small intestinal microbiota in liver cirrhosis and its association with etiology. Sci Rep 2016;6:34055.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hiippala K, Jouhten H, Ronkainen A, et al. The potential of gut commensals in reinforcing intestinal barrier function and alleviating inflammation. Nutrients 2018;10:988.

    PubMed  PubMed Central  Google Scholar 

  58. Bunesova V, Lacroix C, Schwab C. Mucin cross-feeding of infant Bifidobacteria and Eubacterium hallii. Microb Ecol 2018;75:228–238.

    CAS  PubMed  Google Scholar 

  59. Kim KK, Lee JS, Stevens DA. Microbiology and epidemiology of Halomonas species. Future Microbiol 2013;8:1559–1573.

    CAS  PubMed  Google Scholar 

  60. Ezeji JC, Sarikonda DK, Hopperton A, et al. Parabacteroides distasonis: intriguing aerotolerant gut anaerobe with emerging antimicrobial resistance and pathogenic and probiotic roles in human health. Gut Microbes 2021;13:1922241.

    PubMed  PubMed Central  Google Scholar 

  61. Wang K, Liao M, Zhou N, et al. Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids. Cell Rep 2019;26:222–235.e5.

    PubMed  Google Scholar 

  62. Wu TR, Lin CS, Chang CJ, et al. Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis. Gut 2019;68:248–262.

    CAS  PubMed  Google Scholar 

  63. Wong VW, Tse CH, Lam TT, et al. Molecular characterization of the fecal microbiota in patients with nonalcoholic steatohepatitis–a longitudinal study. PLoS One 2013; 8: e62885.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ren Z, Li A, Jiang J, et al. Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut 2019;68:1014–1023.

    CAS  PubMed  Google Scholar 

  65. Pal D, Naskar M, Bera A, et al. Chemical synthesis of the pentasaccharide repeating unit of the O-specific polysaccharide from Ruminococcus gnavus. Carbohydr Res 2021;507:108384.

    CAS  PubMed  Google Scholar 

  66. Jin M, Kalainy S, Baskota N, et al. Faecal microbiota from patients with cirrhosis has a low capacity to ferment non-digestible carbohydrates into short-chain fatty acids. Liver Int 2019;39:1437–1447.

    CAS  PubMed  Google Scholar 

  67. Scott KP, Antoine JM, Midtvedt T, et al. Manipulating the gut microbiota to maintain health and treat disease. Microb Ecol Health Dis 2015;26:25877.

    PubMed  Google Scholar 

  68. Duarte S, Stefano JT, Miele L, et al. Gut microbiome composition in lean patients with NASH is associated with liver damage independent of caloric intake: a prospective pilot study. Nutr Metab Cardiovasc Dis 2018;28:369–384.

    CAS  PubMed  Google Scholar 

  69. Joossens M, Huys G, Cnockaert M, et al. Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut 2011;60:631–637.

    PubMed  Google Scholar 

  70. Henke MT, Kenny DJ, Cassilly CD, et al. Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn’s disease, produces an inflammatory polysaccharide. Proc Natl Acad Sci U S A 2019;116:12672–12677.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hall AB, Yassour M, Sauk J, et al. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med 2017;9:103.

    PubMed  PubMed Central  Google Scholar 

  72. Komiyama S, Yamada T, Takemura N, et al. Profiling of tumour-associated microbiota in human hepatocellular carcinoma. Sci Rep 2021;11:10589.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Boursier J, Mueller O, Barret M, et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology 2016;63:764–775.

    CAS  PubMed  Google Scholar 

  74. Loomba R, Seguritan V, et al. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab 2017;25:1054–1062.e5.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Dong TS, Katzka W, Lagishetty V, et al. A microbial signature identifies advanced fibrosis in patients with chronic liver disease mainly due to NAFLD. Sci Rep 2020;10:2771.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lee G, You HJ, Bajaj JS, et al. Distinct signatures of gut microbiome and metabolites associated with significant fibrosis in non-obese NAFLD. Nat Commun 2020;11:4982.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Cheng DY and Chi X were responsible for designing the study and acquisiting the data. Chi X, Sun X and Liu SA analyzed and interpreted the data. Chi X drafted the manuscript. Xing HC, Wang RB and Cheng DY critically revised the manuscript for important intellectual content. Chen Q, Sun X and Liu SA provided administrative, technical material support and study supervision. All authors approved the final version of the manuscript for publication and agreed to be accountable for all aspects of the work.

Corresponding author

Correspondence to Dan-ying Cheng.

Ethics declarations

Chen Q is a staff of China Traditional Chinese Medicine Holding Co., Ltd. The authors declare that China Traditional Chinese

Additional information

Supported by the National Key Research and Development Program of China (No. 2021YFC2301800), The Capital’s Funds for Health Improvement and Research (No. CFH2018-2-2173 and CFH2020-1-2171), Digestive Medical Coordinated Development Center of Beijing Municipal Administration of Hospitals (No. XXT26)

Electronic supplementary material

11655_2023_3542_MOESM1_ESM.pdf

Appendix 1 Correlation between Intestinal Microbiota and Fibrosis Score in Patients with Hepatitis B Cirrhosis/Liver Fibrosis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, X., Cheng, Dy., Sun, X. et al. Efficacy of Biejiajian Pill on Intestinal Microbiota in Patients with Hepatitis B Cirrhosis/Liver Fibrosis: A Randomized Double-Blind Controlled Trial. Chin. J. Integr. Med. 29, 771–781 (2023). https://doi.org/10.1007/s11655-023-3542-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-023-3542-2

Keywords

Navigation