Skip to main content

Advertisement

Log in

Dihydromyricetin Alleviates H9C2 Cell Apoptosis and Autophagy by Regulating CircHIPK3 Expression and PI3K/AKT/mTOR Pathway

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To investigate the effect and potential mechanism of dihydromyricetin (Dmy) on H9C2 cell proliferation, apoptosis, and autophagy.

Methods

H9C2 cells were randomly divided into 7 groups, namely control, model, EV (empty pCDH-CMV-MCS-EF1-CopGFP-T2A-Puro vector), IV (circHIPK3 interference), Dmy (50 µ mol/L), Dmy+IV, and Dmy+EV groups. Cell proliferation and apoptosis were detected by cell counting kit-8 assay and flow cytometry, respectivley. Western blot was used to evaluate the levels of light chain 3 II/I (LC3II/I), phospho-phosphoinositide 3-kinase (p-PI3K), protein kinase B (p-AKT), and phospho-mammalian target of rapamycin (p-mTOR). The level of circHIPK3 was determined using reverse transcriptase polymerase chain reaction. Electron microscopy was used to observe autophagosomes in H9C2 cells.

Results

Compared to H9C2 cells, the expression of circHIPK in H9C2 hypoxia model cells increased significantly (P<0.05). Compared to the control group, the cell apoptosis and autophagosomes increased, cell proliferation rate decreased significantly, and the expression of LC3 II/I significantly increased (all P<0.05). Compared to the model group, the rate of apoptosis and autophagosomes in IV, Dmy, and Dmy+IV group decreased, the cell proliferation rate increased, and the expression of LC3 II/I decreased significantly (all P<0.05). Compared to the control group, the expressions of p-PI3K, p-AKT, and p-mTOR in the model group significantly reduced (P<0.05), whereas after treatment with Dmy and sh-circHIPK3, the above situation was reversed (P<0.05).

Conclusion

Dmy plays a protective role in H9C2 cells by inhibiting circHIPK expression and cell apoptosis and autophagy, and the mechanism may be related to PI3K/AKT/mTOR pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The data used to support the findings of this study can be obtained from the corresponding author upon request.

Reference

  1. DeFilippis AP, Chapman AR, Mills NL, de Lemos JA, Arbab-Zadeh A, Newby LK, et al. Assessment and treatment of patients with type 2 myocardial infarction and acute nonischemic myocardial injury. Circulation 2019;140:1661–1678.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hubbi ME, Semenza GL. Regulation of cell proliferation by hypoxia-inducible factors. Am J Physiol Cell Physiol 2015;309:C775–C782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lu L, Liu M, Sun R, Zheng Y, Zhang P. Myocardial infarction: symptoms and treatments. Cell Biochem Biophys 2015;72:865–867.

    Article  CAS  PubMed  Google Scholar 

  4. Huang SL, Li XZ, Zheng H, Si XY, Li B, Wei GQ, et al. Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation 2019;139:2857–2876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Guo ZX, Zhou FZ, Song W, Yu LL, Yan WJ, Yin LH, et al. Suppression of microRNA-101 attenuates hypoxia-induced myocardial H9c2 cell injury by targeting DIMT1-Sp1/survivin pathway. Eur Rev Med Pharmacol Sci 2018;22:6965–6976.

    PubMed  Google Scholar 

  6. Wang K, Gan TY, Li N, Liu CY, Zhou LY, Gao JN, et al. Circular RNA mediates cardiomyocyte death via miRNA-dependent upregulation of MTP18 expression. Cell Death Differ 2017;24:1111–1120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Garikipati VNS, Verma SK, Cheng ZJ, Liang DM, Truongcao MM, Cimini M, et al. Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis. Nat Commun 2019;10:4317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Han D, Wang Y, Wang Y, Dai X, Zhou T, Chen J, et al. The tumor-suppressive human circular RNA CircITCH sponges miR-330-5p to ameliorate doxorubicin-induced cardiotoxicity through upregulating SIRT6, survivin, and SERCA2a. Circ Res 2020;127:e108–e125.

    Article  CAS  PubMed  Google Scholar 

  9. Lei D, Wang Y, Zhang L, Wang Z. Circ_0010729 regulates hypoxia-induced cardiomyocyte injuries by activating TRAF5 via sponging miR-27a-3p. Life Sci 2020;262:118511.

    Article  CAS  PubMed  Google Scholar 

  10. Wang Y, Zhao R, Liu W, Wang Z, Rong J, Long X, et al. Exosomal circHIPK3 released from hypoxia-pretreated cardiomyocytes regulates oxidative damage in cardiac microvascular endothelial cells via the miR-29a/IGF-1 pathway. Oxid Med Cell Longev 2019;2019:7954657.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen X, Mao R, Su W, Yang X, Geng Q, Guo C, et al. Circular RNA circHIPK3 modulates autophagy via MIR124-3p-STAT3-PRKAA/AMPKα signaling in STK11 mutant lung cancer. Autophagy 2020;16:659–671.

    Article  CAS  PubMed  Google Scholar 

  12. Liu D, Mao Y, Ding L, Zeng XA. Dihydromyricetin: a review on identification and quantification methods, biological activities, chemical stability, metabolism and approaches to enhance its bioavailability. Trends Food Sci Technol 2019;91:586–597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang J, Chen Y, Luo H, Sun L, Xu M, Yu J, et al. Recent update on the pharmacological effects and mechanisms of dihydromyricetin. Front Pharmacol 2018;9:1204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang X, Wang L, Peng L, Tian X, Qiu X, Cao H, et al. Dihydromyricetin protects HUVECs of oxidative damage induced by sodium nitroprusside through activating PI3K/Akt/FoxO3a signalling pathway. J Cell Mol Med 2019;23:4829–4838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu S, Ai Q, Feng K, Li Y, Liu X. The cardioprotective effect of dihydromyricetin prevents ischemia-reperfusion-induced apoptosis in vivo and in vitro via the PI3K/Akt and HIF-1 α signaling pathways. Apoptosis 2016;21:1366–1385.

    Article  CAS  PubMed  Google Scholar 

  16. Tan M, Jiang B, Wang H, Ouyang W, Chen X, Wang T, et al. Dihydromyricetin induced lncRNA MALAT1-TFEB-dependent autophagic cell death in cutaneous squamous cell carcinoma. J Cancer 2019;10:4245–4255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gong L, Xu H, Zhang X, Zhang T, Shi J, Chang H. Oridonin relieves hypoxia-evoked apoptosis and autophagy via modulating microRNA-214 in H9c2 cells. Artif Cells Nanomed Biotechnol 2019;47:2585–2592.

    Article  CAS  PubMed  Google Scholar 

  18. Liu X, Deng Y, Xu Y, Jin W, Li H. MicroRNA-223 protects neonatal rat cardiomyocytes and H9c2 cells from hypoxia-induced apoptosis and excessive autophagy via the Akt/mTOR pathway by targeting PARP-1. J Mol Cell Cardiol 2018;118:133–146.

    Article  CAS  PubMed  Google Scholar 

  19. Wu JZ, Ardah M, Haikal C, Svanbergsson A, Diepenbroek M, Vaikath NN, et al. Dihydromyricetin and salvianolic acid B inhibit alpha-synuclein aggregation and enhance chaperone-mediated autophagy. Transl Neurodegener 2019;15:18.

    Article  Google Scholar 

  20. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak AN, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013;495:333–338.

    Article  CAS  PubMed  Google Scholar 

  21. Panni S, Lovering RC, Porras P, Orchard S. Non-coding RNA regulatory networks. Biochim Biophys Acta Gene Regul Mech 2020;1863:194417.

    Article  CAS  PubMed  Google Scholar 

  22. Nakamura S, Yoshimori T. New insights into autophagosome-lysosome fusion. J Cell Sci 2017;130:1209–1216.

    CAS  PubMed  Google Scholar 

  23. Napoletan F, Baron O, Vandenabeele P, Mollereau B, Fanto M. Intersections between regulated cell death and autophagy. Trends Cell Biol 2019;29:323–338.

    Article  Google Scholar 

  24. Su T, Wang FS. Relationship between PI3K/Akt/mTOR signaling pathway and autophagy and tumor. Chin J Biochem Mol Biol 2016;32:1192–1196.

    Google Scholar 

  25. Guo L, Tan K, Luo Q, Bai X. Dihydromyricetin promotes autophagy and attenuates renal interstitial fibrosis by regulating miR-155-5p/PTEN signaling in diabetic nephropathy. Bosn J Basic Med Sci 2020;20:372–380.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Zhang ZY, Liu C, and Wang PX drafted the manuscript. Han YW and Zhang YW reviewed and modified the manuscript. Hao ML, Song ZX, and Zhang XY revised the manuscript. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Xiao-ying Zhang.

Ethics declarations

There are no conflicts of interest.

Additional information

Supported by Science Foundation of Education Department of Shaanxi Provincial Government (No. 19JK0890), Natural Science Foundation of Xizang (Tibet) Autonomous Region (No. XZ202001ZR0089G), Major Training Project of Xizang Minzu University (Nos. 18MDZ03 and 20MDT03), and Funded Project of Young Scholar Cultivation Program of Xizang Minzu University (No. 21MDX04)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Zy., Liu, C., Wang, Px. et al. Dihydromyricetin Alleviates H9C2 Cell Apoptosis and Autophagy by Regulating CircHIPK3 Expression and PI3K/AKT/mTOR Pathway. Chin. J. Integr. Med. 29, 434–440 (2023). https://doi.org/10.1007/s11655-022-3687-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-022-3687-4

Keywords

Navigation