Skip to main content

Advertisement

Log in

Zhizhu Decoction Alleviates Intestinal Barrier Damage via Regulating SIRT1/FoxO1 Signaling Pathway in Slow Transit Constipation Model Mice

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To explore the possible effects and mechanism of Zhizhu Decoction (ZZD) on the pathophysiology of slow transit constipation (STC).

Methods

A total of 54 C57BL/6 mice was randomly divided into the following 6 groups by a random number table, including control, STC model (model), positive control, and low-, medium- and high-doses ZZD treatment groups (5, 10, 20 g/kg, namely L, M-, and H-ZZD, respectively), 9 mice in each group. Following 2-week treatment, intestinal transport rate (ITR) and fecal water content were determined, and blood and colon tissue samples were collected. Hematoxylin-eosin and periodic acid-Schiff staining were performed to evaluate the morphology of colon tissues and calculate the number of goblet cells. To determine intestinal permeability, serum levels of lipopolysaccharide (LPS), low-density lipoprotein (LDL) and mannose were measured using enzyme-linked immunosorbent assay (ELISA). Western blot analysis was carried out to detect the expression levels of intestinal tight junction proteins zona-occludens-1 (ZO-1), claudin-1, occludin and recombinant mucin 2 (MUC2). The mRNA expression levels of inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-4, IL-10 and IL-22 were determined using reverse transcription-quantitative reverse transcription reaction. Colon indexes of oxidative stress were measured by ELISA, and protein expression levels of colon silent information regulator 1/forkhead box O transcription factor 1 (SIRT1/FoxO1) antioxidant signaling pathway were detected by Western blot.

Results

Compared with the model group, ITR and fecal moisture were significantly enhanced in STC mice in the M-ZZD and H-ZZD groups (P<0.01). Additionally, ZZD treatment notably increased the thickness of mucosal and muscular tissue, elevated the number of goblet cells in the colon of STC mice, reduced the secretion levels of LPS, LDL and mannose, and upregulated ZO-1, claudin-1, occludin and MUC2 expressions in the colon in a dose-dependent manner, compared with the model group (P<0.05 or P<0.01). In addition, ZZD significantly attenuated intestinal inflammation and oxidative stress and activated the SIRT1/FoxO1 signaling pathway (P<0.05 or P<0.01).

Conclusion

ZZD exhibited beneficial effects on the intestinal system of STC mice and alleviated intestinal inflammation and oxidative stress via activating SIRT1/FoxO1 antioxidant signaling pathway in the colon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sailer M. Slow transit constipation. Zentralbl Chir 2019;144:179–189.

    PubMed  Google Scholar 

  2. Tillou J, Poylin V. Functional disorders: slow-transit constipation. Clin Colon Rectal Surg 2017;30:76–86.

    PubMed  PubMed Central  Google Scholar 

  3. Black CJ, Ford AC. Chronic idiopathic constipation in adults: epidemiology, pathophysiology, diagnosis and clinical management. Med J Aust 2018;209:86–91.

    PubMed  Google Scholar 

  4. Sharma A, Rao S. Constipation: pathophysiology and current therapeutic approaches. Handb Exp Pharmacol 2017;239:59–74.

    CAS  PubMed  Google Scholar 

  5. Eardley S, Bishop FL, Prescott P, Cardini F, Brinkhaus B, Santos-Rey K, et al. A systematic literature review of complementary and alternative medicine prevalence in EU. Forsch Komplementmed 2012;19 (Suppl 2):18–28.

    PubMed  Google Scholar 

  6. Wu H, Jing Z, Tang X, Wang X, Zhang S, Yu Y, et al. To compare the efficacy of two kinds of Zhizhu Pills in the treatment of functional dyspepsia of spleen-deficiency and qi-stagnation syndrome: a randomized group sequential comparative trial. BMC Gastroenterol 2011;11:81.

    PubMed  PubMed Central  Google Scholar 

  7. Xiao Y, Li Y, Shu J, Li Y, Xu J, Ren J, et al. The efficacy of oral Zhizhu Kuanzhong, a traditional Chinese medicine, in patients with postprandial distress syndrome. J Gastroenterol Hepatol 2019;34:526–531.

    CAS  PubMed  Google Scholar 

  8. Wen MY, Zhang FC, Wang YJ. Effect of Zhizhu Kuanzhong Capsules on treatment of functional dyspepsia: a meta-analysis of randomized controlled trials. Chin J Integr Med 2019;25:625–630.

    PubMed  Google Scholar 

  9. He W, Zhang Y, Wang X, Guo L, Han L, Liu E, et al. Zhizhu Decoction promotes gastric emptying and protects the gastric mucosa. J Med Food 2013;16:306–311.

    PubMed  Google Scholar 

  10. Talley NJ. Letter: chronic constipation—a warning sign for oxidative stress? Author’s reply. Aliment Pharmacol Ther 2015;42:386.

    CAS  PubMed  Google Scholar 

  11. Vermorken AJ, Andrès E, Cui Y. Bowel movement frequency, oxidative stress and disease prevention. Mol Clin Oncol 2016;5:339–342.

    PubMed  PubMed Central  Google Scholar 

  12. Li H, Shen L, Lv T, Wang R, Zhang N, Peng H, et al. Salidroside attenuates dextran sulfate sodium-induced colitis in mice via SIRT1/FoxOs signaling pathway. Eur J Pharmacol 2019;861:172591.

    CAS  PubMed  Google Scholar 

  13. Wang K, Li YF, Lv Q, Li XM, Dai Y, Wei ZF. Bergenin, acting as an agonist of PPARγ, ameliorates experimental colitis in mice through improving expression of SIRT1, and therefore Inhibiting NF-κ B-mediated macrophage activation. Front Pharmacol 2017;8:981.

    PubMed  Google Scholar 

  14. Wellman AS, Metukuri MR, Kazgan N, Xu X, Xu Q, Ren NSX, et al. Intestinal epithelial sirtuin 1 regulates intestinal inflammation during aging in mice by altering the intestinal microbiota. Gastroenterology 2017;153:772–786.

    PubMed  Google Scholar 

  15. Yue L, Zhao L, Liu H, Li X, Wang B, Guo H, et al. Adiponectin protects against glutamate-induced excitotoxicity via activating SIRT1-dependent PGC-1α expression in HT22 hippocampal neurons. Oxid Med Cell Longev 2016;2016:2957354.

    PubMed  PubMed Central  Google Scholar 

  16. Ren H, Shao Y, Wu C, Ma X, Lv C, Wang Q. Metformin alleviates oxidative stress and enhances autophagy in diabetic kidney disease via AMPK/SIRT1-FoxO1 pathway. Mol Cell Endocrinol 2020;500:110628.

    CAS  PubMed  Google Scholar 

  17. Ren BC, Zhang YF, Liu SS, Cheng XJ, Yang X, Cui XG, et al. Curcumin alleviates oxidative stress and inhibits apoptosis in diabetic cardiomyopathy via Sirt1-Foxo1 and PI3K-Akt signalling pathways. J Cell Mol Med 2020;24:12355–12367.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen Z, Feng J, Hu S, Hua Y, Ma S, Fu W, et al. Bacillus subtilis promotes the release of 5-HT to regulate intestinal peristalsis in STC mice via bile acid and its receptor TGR5 pathway. Dig Dis Sci 2021. doi: https://doi.org/10.1007/s10620-021-07308-4 [Epub ahead of print].

  19. Wang HL. Understanding the pathogenesis of slow-transit constipation: one step forward. Dig Dis Sci 2015;60:2216–2218.

    PubMed  Google Scholar 

  20. Jiang F, Zhou JY, Wu J, Tian F, Zhu XX, Zhu CL, et al. Yangyin Runchang Decoction improves intestinal motility in mice with atropine/diphenoxylate-induced slow-transit constipation. Evid-Based Complement Alternat Med 2017;2017:4249016.

    PubMed  PubMed Central  Google Scholar 

  21. Deng Z, Fu Z, Yan W, Nie K, Ding L, Ma D, et al. The different effects of Chinese Herb Solid Drink and lactulose on gut microbiota in rats with slow transit constipation induced by compound diphenoxylate. Food Res Int 2021;143:110273.

    CAS  PubMed  Google Scholar 

  22. Cong L, Duan LW, Su WP, Hao S, Li DF. Efficacy of high specific volume polysaccharide - a new type of dietary fiber-on molecular mechanism of intestinal water metabolism in rats with constipation. Med Sci Monit 2019;25:5028–5035.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Liñán-Rico A, Turco F, Ochoa—Cortes F, Harzman A, Needleman BJ, Arsenescu R, et al. Molecular signaling and dysfunction of the human reactive enteric glial cell phenotype: implications for GI infection, IBD, POI, neurological, motility, and GI disorders. Inflamm Bowel Dis 2016;22:1812–1834.

    PubMed  Google Scholar 

  24. Li DY, Dai YK, Zhang YZ, Huang MX, Li RL, Ou-Yang J, et al. Systematic review and meta-analysis of traditional Chinese medicine in the treatment of constipation-predominant irritable bowel syndrome. PLoS One 2017;12:e0189491.

    PubMed  PubMed Central  Google Scholar 

  25. Lin LW, Fu YT, Dunning T, Zhang AL, Ho TH, Duke M, et al. Efficacy of traditional Chinese medicine for the management of constipation: a systematic review. J Altern Complement Med 2009;15:1335–1346.

    PubMed  Google Scholar 

  26. Wang C, Zhu M, Xia W, Jiang W, Li Y. Meta-analysis of traditional Chinese medicine in treating functional dyspepsia of Liver-Stomach disharmony syndrome. J Tradit Chin Med (Chin) 2012;32:515–522.

    Google Scholar 

  27. Tan W, Li Y, Wang Y, Zhang Z, Wang T, Zhou Q, et al. Anti-coagulative and gastrointestinal motility regulative activities of Fructus Aurantii Immaturus and its effective fractions. Biomed Pharmacother 2017;90:244–252.

    CAS  PubMed  Google Scholar 

  28. Chen J, Liu X, Dou DQ. Bidirectional effective components of atractylodis macrocephalae rhizoma on gastrointestinal peristalsis. Int J Pharmacol 2016;12:108–115.

    CAS  Google Scholar 

  29. Wang C, Ren Q, Chen XT, Song ZQ, Ning ZC, Gan JH, et al. System pharmacology-based strategy to decode the synergistic mechanism of Zhi-zhu Wan for functional dyspepsia. Front Pharmacol 2018;9:841.

    PubMed  PubMed Central  Google Scholar 

  30. Huang A, Chi Y, Zeng Y, Lu LP. Influence of Fructus Aurantii Immaturus flavonoids on gastrointestinal motility in rats with functional dyspepsia. Tradit Chin Drug Res Clin Pharmacol (Chin) 2012,23:612–615.

    CAS  Google Scholar 

  31. Bharucha AE, Wald A. Chronic constipation. Mayo Clin Proc 2019;94:2340–2357.

    PubMed  Google Scholar 

  32. Garcia-Hernandez V, Quiros M, Nusrat A. Intestinal epithelial claudins: expression and regulation in homeostasis and inflammation. Ann N Y Acad Sci 2017;1397:66–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Salvo Romero E, Alonso Cotoner C, Pardo Camacho C, Casado Bedmar M, Vicario M. The intestinal barrier function and its involvement in digestive disease. Rev Esp Enferm Dig 2015;107:686–696.

    CAS  PubMed  Google Scholar 

  34. Sánchez de Medina F, Romero-Calvo I, Mascaraque C, Martínez-Augustin O. Intestinal inflammation and mucosal barrier function. Inflamm Bowel Dis 2014;20:2394–2404.

    PubMed  Google Scholar 

  35. Luissint AC, Parkos CA, Nusrat A. Inflammation and the Intestinal barrier: leukocyte-epithelial cell interactions, cell junction remodeling, and mucosal repair. Gastroenterology 2016;151:616–632.

    CAS  PubMed  Google Scholar 

  36. Mokhtare M, Alimoradzadeh R, Agah S, Mirmiranpour H, Khodabandehloo N. The association between modulating inflammatory cytokines and constipation of geriatrics in Iran. Middle East J Dig Dis 2017;9:228–234.

    PubMed  PubMed Central  Google Scholar 

  37. Singh CK, Chhabra G, Ndiaye MA, Garcia-Peterson LM, Mack NJ, Ahmad N. The role of sirtuins in antioxidant and redox signaling. Antioxid Redox Signal 2018;28:643–661.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Mendes KL, Lelis DF, Santos SHS. Nuclear sirtuins and inflammatory signaling pathways. Cytokine Growth Factor Rev 2017;38:98–105.

    CAS  PubMed  Google Scholar 

  39. Chang HC, Guarente L. SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab 2014;25:138–145.

    CAS  PubMed  Google Scholar 

  40. Hwang JW, Yao H, Caito S, Sundar IK, Rahman I. Redox regulation of SIRT1 in inflammation and cellular senescence. Free Radic Biol Med 2013;61:95–110.

    CAS  PubMed  Google Scholar 

  41. Qiang L, Sample A, Liu H, Wu X, He YY. Epidermal SIRT1 regulates inflammation, cell migration, and wound healing. Sci Rep 2017;7:14110.

    PubMed  PubMed Central  Google Scholar 

  42. Liu J, Zhou J, Wu Z, Wang X, Liu L, Yao C. Cyanidin 3-O-β-Glucoside ameliorates ethanol-induced acute liver injury by attenuating oxidative stress and apoptosis: the role of SIRT1/FOXO1 signaling. Alcohol Clin Exp Res 2016;40:457–466.

    CAS  PubMed  Google Scholar 

  43. Caruso R, Marafini I, Franzè E, Stolfi C, Zorzi F, Monteleone I, et al. Defective expression of SIRT1 contributes to sustain inflammatory pathways in the gut. Mucosal Immunol 2014;7:1467–1479.

    CAS  PubMed  Google Scholar 

  44. Melhem H, Hansmannel F, Bressenot A, Battaglia-Hsu SF, Billioud V, Alberto JM, et al. Methyl-deficient diet promotes colitis and SIRT1-mediated endoplasmic reticulum stress. Gut 2016;65:595–606.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Wen Y, Zhan Y and Tang XG designed the research; Wen Y, Zhan Y and Tang SY performed the research; Liu F, Wang QX and Kong PF analyzed the data; Wen Y, Zhan Y and Tang XG wrote the paper. All authors read and agreed to the final version for publication.

Corresponding author

Correspondence to Xue-gui Tang.

Ethics declarations

The authors report no conflict of interest.

Additional information

Supported by the General Project of National Natural Science Foundation of China (No. 82074429)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Y., Zhan, Y., Tang, Sy. et al. Zhizhu Decoction Alleviates Intestinal Barrier Damage via Regulating SIRT1/FoxO1 Signaling Pathway in Slow Transit Constipation Model Mice. Chin. J. Integr. Med. 29, 809–817 (2023). https://doi.org/10.1007/s11655-022-3539-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-022-3539-2

Keywords

Navigation