Skip to main content

Advertisement

Log in

Evidence for Anticancer Effects of Chinese Medicine Monomers on Colorectal Cancer

  • Review
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Colorectal cancer is one of the most commonly occurring cancers worldwide. Although clinical reports have indicated the anticancer effects of Chinese herbal medicine, the multiple underlying molecular and biochemical mechanisms of action remain to be fully characterized. Chinese medicine (CM) monomers, which are the active components of CM, serve as the material basis of the functional mechanisms of CM. The aim of this review is to summarize the current experimental evidence from in vitro, in vivo, and clinical studies for the effects of CM monomers in colorectal cancer prevention and treatment, providing some useful references for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cunningham D, Atkin W, Lenz HJ, et al. Colorectal cancer. Lancet 2010;375:1030–1047.

    Article  PubMed  Google Scholar 

  2. De Rosa M, Pace U, Rega D, et al. Genetics, diagnosis and management of colorectal cancer (Review). Oncol Rep 2015;34:1087–1096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017;66:683–691.

    Article  PubMed  Google Scholar 

  4. Yang MH, Kim J, Khan IA, et al. Nonsteroidal anti-inflammatory drug activated gene-1 (NAG-1) modulators from natural products as anticancer agents. Life Sci 2014;100:75–84.

    Article  CAS  PubMed  Google Scholar 

  5. Cui Y, Shu XO, Gao Y, et al. Use of complementary and alternative medicine by chinese women with breast cancer. Breast Cancer Res Treat 2004;85:263–270.

    Article  PubMed  Google Scholar 

  6. Chen Z, Gu K, Zheng Y, et al. The use of complementary and alternative medicine among Chinese women with breast cancer. J Alternat Complement Med 2008;14:1049–1055.

    Article  Google Scholar 

  7. Cho WCS, ed. Supportive cancer care with Chinese medicine. Blackwell Publishing Ltd.; 2010.

  8. Zhong LL, Chen HY, Cho WC, et al. The efficacy of Chinese herbal medicine as an adjunctive therapy for colorectal cancer: a systematic review and meta-analysis. Complement Ther Med 2012;20:240–252.

    Article  PubMed  Google Scholar 

  9. Zhang JY, Yi T, Liu J, et al. Quercetin induces apoptosis via the mitochondrial pathway in KB and KBv200 cells. J Agricul Food Chem 2013;61:2188–2195.

    Article  CAS  Google Scholar 

  10. Zhang L, Fang Y, Xu XF, Jin DY. Moscatilin induces apoptosis of pancreatic cancer cells via reactive oxygen species and the JNK/SAPK pathway. Mol Med Rep 2017;15:1195–1203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tao YW, Lin YC, She ZG, et al. Anticancer activity and mechanism investigation of beauvericin isolated from secondary metabolites of the mangrove endophytic fungi. Anti-cancer Agents Med Chem 2015;15:258–266.

    Article  CAS  Google Scholar 

  12. Zhang JY, Lin MT, Tung HY, et al. Bruceine D induces apoptosis in human chronic myeloid leukemia K562 cells via mitochondrial pathway. Am J Cancer Res 2016;6:819–826.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang JY, Lin MT, Zhou MJ, et al. Combinational treatment of curcumin and quercetin against gastric cancer MGC-803 cells in vitro. Molecules 2015;20:11524–11534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Meng FC, Wu ZF, Yin ZQ, et al. Coptidis rhizoma and its main bioactive components: recent advances in chemical investigation, quality evaluation and pharmacological activity. Chin Med 2018;13:13.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gupta SC, Kim JH, Prasad S, et al. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metast Rev 2010;29:405–434.

    Article  CAS  Google Scholar 

  16. Han B, Jiang P, Li Z, et al. Coptisine-induced apoptosis in human colon cancer cells (HCT-116) is mediated by PI3K/Akt and mitochondrial-associated apoptotic pathway. Phytomedicine 2018;48:152–160.

    Article  CAS  PubMed  Google Scholar 

  17. Cao Q, Hong S, Li Y, et al. Coptisine suppresses tumor growth and progression by down-regulating MFG-E8 in colorectal cancer. RSC Adv 2018;8:30937–30945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang T, Xiao Y, Yi L, et al. Coptisine from Rhizoma Coptidis suppresses HCT-116 cells-related tumor growth in vitro and in vivo. Sci Rep 2017;7:38524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ni T, He Z, Dai Y, Yao J, et al. Oroxylin A suppresses the development and growth of colorectal cancer through reprogram of HIF1alpha-modulated fatty acid metabolism. Cell Death Dis 2017;8:e2865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hu R, Chen N, Yao J, et al. The role of Nrf2 and apoptotic signaling pathways in oroxylin A-mediated responses in HCT-116 colorectal adenocarcinoma cells and xenograft tumors. Anti-cancer Drugs 2012;23:651–658.

    Article  CAS  PubMed  Google Scholar 

  21. Yang X, Zhang F, Wang Y, et al. Oroxylin A inhibits colitis-associated carcinogenesis through modulating the IL-6/STAT3 signaling pathway. Inflam Bowel Dis 2013;19:1990–2000.

    Google Scholar 

  22. Qiao C, Lu N, Zhou Y, et al. Oroxylin A modulates mitochondrial function and apoptosis in human colon cancer cells by inducing mitochondrial translocation of wild-type p53. Oncotarget 2016;7:17009–17020.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Qiao C, Wei L, Dai Q, et al. UCP2-related mitochondrial pathway participates in oroxylin A-induced apoptosis in human colon cancer cells. J Cell Physiol 2015;230:1054–1063.

    Article  CAS  PubMed  Google Scholar 

  24. Ha J, Zhao L, Zhao Q, et al. Oroxylin A improves the sensitivity of HT-29 human colon cancer cells to 5-FU through modulation of the COX-2 signaling pathway. Biochem Cell Biol 2012;90:521–531.

    Article  CAS  PubMed  Google Scholar 

  25. Tan H, Li X, Yang WH, et al. A flavone, Wogonin from Scutellaria baicalensis inhibits the proliferation of human colorectal cancer cells by inducing of autophagy, apoptosis and G2/M cell cycle arrest via modulating the PI3K/AKT and STAT3 signalling pathways. J BUON 2019;24:1143–1149.

    PubMed  Google Scholar 

  26. Feng Q, Wang H, Pang J, et al. Prevention of wogonin on colorectal cancer tumorigenesis by regulating p53 nuclear translocation. Front Pharmacol 2018;9:1356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yao J, Zhao L, Zhao Q, et al. NF-kappaB and Nrf2 signaling pathways contribute to wogonin-mediated inhibition of inflammation-associated colorectal carcinogenesis. Cell Death Dis 2014;5:e1283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang H, Zhao L, Zhu LT, et al. Wogonin reverses hypoxia resistance of human colon cancer HCT116 cells via downregulation of HIF-1alpha and glycolysis, by inhibiting PI3K/Akt signaling pathway. Molecul Carcinogen 2014;53 Suppl 1:E107–E118.

    Article  CAS  Google Scholar 

  29. Dai G, Ding K, Cao Q, et al. Emodin suppresses growth and invasion of colorectal cancer cells by inhibiting VEGFR2. Eur J Pharmacol 2019;859:172525.

    Article  CAS  PubMed  Google Scholar 

  30. Wang Y, Luo Q, He X, et al. Emodin induces apoptosis of colon cancer cells via induction of autophagy in a ROS-dependent manner. Oncol Res 2018;26:889–899.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lee KH, Lee MS, Cha EY, et al. Inhibitory effect of emodin on fatty acid synthase, colon cancer proliferation and apoptosis. Mol Med Rep 2017;15:2163–2173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xie MJ, Ma YH, Miao L, et al. Emodin-provoked oxidative stress induces apoptosis in human colon cancer HCT116 cells through a p53-mitochondrial apoptotic pathway. Asian Pacific J Cancer Prev 2014;15:5201–5205.

    Article  Google Scholar 

  33. Pooja T, Karunagaran D. Emodin suppresses Wnt signaling in human colorectal cancer cells SW480 and SW620. Eur J Pharmacol 2014;742:55–64.

    Article  CAS  PubMed  Google Scholar 

  34. Liu B, Yuan B, Zhang L, Mu W, Wang C. ROS/p38/p53/Puma signaling pathway is involved in emodin-induced apoptosis of human colorectal cancer cells. Int J Clin Exp Med 2015;8:15413–15422.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ma L, Li W. Emodin inhibits LOVO colorectal cancer cell proliferation via the regulation of the Bcl-2/Bax ratio and cytochrome C. Exp Ther Med 2014;8:1225–1228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gu J, Cui CF, Yang L, Wang L, Jiang XH. Emodin inhibits colon cancer cell invasion and migration by suppressing epithelial-mesenchymal transition via the Wnt/beta-catenin pathway. Oncol Res 2019;27:193–202.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kuete V, Omosa LK, Tala VR, et al. Cytotoxicity of plumbagin, rapanone and 12 other naturally occurring Quinones from Kenyan Flora towards human carcinoma cells. BMC Pharm Toxicol 2016;17:60.

    Article  Google Scholar 

  38. Tang W, Hong L, Dai W, et al. MicroRNA-500a-5p inhibits colorectal cancer cell invasion and epithelial-mesenchymal transition. Int J Oncol 2020;56:1499–1508.

    CAS  PubMed  Google Scholar 

  39. Ma YS, Weng SW, Lin MW, et al. Antitumor effects of emodin on LS1034 human colon cancer cells in vitro and in vivo: roles of apoptotic cell death and LS1034 tumor xenografts model. Food Chem Toxicol 2012;50:1271–1278.

    Article  CAS  PubMed  Google Scholar 

  40. Iyer VV, Priya PY, Kangeyavelu J. Effects of increased accumulation of doxorubicin due to emodin on efflux transporter and LRP1 expression in lung adenocarcinoma and colorectal carcinoma cells. Mol Cell Biochem 2018;449:91–104.

    Article  CAS  PubMed  Google Scholar 

  41. Aviello G, Rowland I, Gill CI, et al. Anti-proliferative effect of rhein, an anthraquinone isolated from Cassia species, on Caco-2 human adenocarcinoma cells. J Cell Mol Med 2010;14:2006–2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yuan X, Tian W, Hua Y, et al. Rhein enhances the cytotoxicity of effector lymphocytes in colon cancer under hypoxic conditions. Exp Ther Med 2018;16:5350–5358.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhuang Y, Bai Y, Hu Y, et al. Rhein sensitizes human colorectal cancer cells to EGFR inhibitors by inhibiting STAT3 pathway. OncoTargets Ther 2019;12:5281–5291.

    Article  CAS  Google Scholar 

  44. Cheng C, Dong W. Aloe-emodin induces endoplasmic reticulum stress-dependent apoptosis in colorectal cancer cells. Med Sci Monit 2018;24:6331–6339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Suboj P, Babykutty S, Valiyaparambil Gopi DR, et al. Aloe emodin inhibits colon cancer cell migration/angiogenesis by downregulating MMP-2/9, RhoB and VEGF via reduced DNA binding activity of NF-kappaB. Eur J Pharm Sci 2012;45:581–591.

    Article  CAS  PubMed  Google Scholar 

  46. Kimura Y, Sumiyoshi M, Taniguchi M, et al. Antitumor and antimetastatic actions of anthrone-C-glucoside, cassialoin isolated from Cassia garrettiana heartwood in colon 26-bearing mice. Cancer Sci 2008;99:2336–2348.

    Article  CAS  PubMed  Google Scholar 

  47. Shimpo K, Chihara T, Kaneko T, et al. Inhibitory effects of low-dose aloe-emodin on the development of colorectal tumors in min mice. Asian Pacific J Cancer Prev 2014;15:5587–5592.

    Article  Google Scholar 

  48. Deng M, Xue YJ, Xu LR, et al. Chrysophanol suppresses hypoxia-induced epithelial-mesenchymal transition in colorectal cancer cells. Rec (Hoboken) 2019;302:1561–1570.

    Article  CAS  Google Scholar 

  49. Deng M, Xue Y, Xu L, et al. Chrysophanol exhibits inhibitory activities against colorectal cancer by targeting decorin. Cell Biochem Funct 2020;38:47–57.

    Article  CAS  PubMed  Google Scholar 

  50. Han YT, Chen XH, Gao H, et al. Physcion inhibits the metastatic potential of human colorectal cancer SW620 cells in vitro by suppressing the transcription factor SOX2. Acta pharmacol Sin 2016;37:264–275.

    Article  CAS  PubMed  Google Scholar 

  51. Chen X, Gao H, Han Y, et al. Physcion induces mitochondria-driven apoptosis in colorectal cancer cells via downregulating EMMPRIN. Eur J Pharmacol 2015;764:124–133.

    Article  CAS  PubMed  Google Scholar 

  52. Jiang Z, Cao Q, Dai G, et al. Celastrol inhibits colorectal cancer through TGF-beta1/Smad signaling. OncoTargets Ther 2019;12:509–518.

    Article  CAS  Google Scholar 

  53. Wang S, Ma K, Zhou C, et al. LKB1 and YAP phosphorylation play important roles in Celastrol-induced beta-catenin degradation in colorectal cancer. Ther Adv Med Oncol 2019;11:1758835919843736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bufu T, Di X, Yilin Z, et al. Celastrol inhibits colorectal cancer cell proliferation and migration through suppression of MMP3 and MMP7 by the PI3K/AKT signaling pathway. Anti-cancer Drugs 2018;29:530–538.

    Article  CAS  PubMed  Google Scholar 

  55. Qi Y, Wang R, Zhao L, et al. Celastrol suppresses tryptophan catabolism in human colon cancer cells as revealed by metabolic profiling and targeted metabolite analysis. Biol Pharm Bull 2018;41:1243–1250.

    Article  CAS  PubMed  Google Scholar 

  56. Yadav VR, Sung B, Prasad S, et al. Celastrol suppresses invasion of colon and pancreatic cancer cells through the downregulation of expression of CXCR4 chemokine receptor. J Molecular Med 2010;88:1243–1253.

    Article  CAS  Google Scholar 

  57. Huang XP, Chen JK, Xu W, et al. Systematic identification of celastrol-binding proteins reveals that Shoc2 is inhibited by celastrol. Biosci Rep 2018;38:BSR20181233.

    Article  Google Scholar 

  58. Gao Y, Zhou S, Pang L, et al. Celastrol suppresses nitric oxide synthases and the angiogenesis pathway in colorectal cancer. Free Radical Res 2019;53:324–334.

    Article  CAS  Google Scholar 

  59. Zhu H, Liu XW, Ding WJ, et al. Up-regulation of death receptor 4 and 5 by celastrol enhances the anti-cancer activity of TRAIL/Apo-2L. Cancer Lett 2010;297:155–164.

    Article  CAS  PubMed  Google Scholar 

  60. Lin L, Sun Y, Wang D, et al. Celastrol ameliorates ulcerative colitis-related colorectal cancer in mice via suppressing inflammatory responses and epithelial-mesenchymal transition. Front Pharm 2015;6:320.

    Google Scholar 

  61. Moreira H, Szyjka A, Gasiorowski K. Chemopreventive activity of celastrol in drug-resistant human colon carcinoma cell cultures. Oncotarget 2018;9:21211–21223.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Moreira H, Szyjka A, Paliszkiewicz K, et al. Prooxidative activity of celastrol induces apoptosis, DNA damage, and cell cycle arrest in drug-resistant human colon cancer cells. Oxidat Med Cell Longev 2019;2019:6793957.

    Article  Google Scholar 

  63. Yoon MJ, Lee AR, Jeong SA, et al. Release of Ca2+ from the endoplasmic reticulum and its subsequent influx into mitochondria trigger celastrol-induced paraptosis in cancer cells. Oncotarget 2014;5:6816–6831.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Barker EC, Kim BG, Yoon JH, et al. Potent suppression of both spontaneous and carcinogen-induced colitis-associated colorectal cancer in mice by dietary celastrol supplementation. Carcinogenesis 2018;39:36–46.

    Article  CAS  PubMed  Google Scholar 

  65. Abaza MS, Al-Attiyah R, Bhardwaj R, et al. Syringic acid from Tamarix aucheriana possesses antimitogenic and chemo-sensitizing activities in human colorectal cancer cells. Pharm Biol 2013;51:1110–1124.

    Article  CAS  PubMed  Google Scholar 

  66. Murayyan AI, Manohar CM, Hayward G, et al. Antiproliferative activity of ontario grown onions against colorectal adenocarcinoma cells. Food Res Int 2017;96:12–18.

    Article  CAS  PubMed  Google Scholar 

  67. Sezer ED, Oktay LM, Karadadaş E, et al. Assessing anticancer potential of blueberry flavonoids, quercetin, kaempferol, and gentisic acid, through oxidative stress and apoptosis parameters on HCT-116 cells. J Med Food 2019;22:1118–1126.

    Article  CAS  PubMed  Google Scholar 

  68. Duthie SJ, Dobson VL. Dietary flavonoids protect human colonocyte DNA from oxidative attack in vitro. Eur J Nutr 1999;38:28–34.

    Article  CAS  PubMed  Google Scholar 

  69. Kim ME, Ha TK, Yoon JH, et al. Myricetin induces cell death of human colon cancer cells via BAX/BCL2-dependent pathway. Anticancer Res 2014;34:701–706.

    CAS  PubMed  Google Scholar 

  70. Ma L, Cao X, Wang H, Lu K. Discovery of myricetin as a potent inhibitor of human flap endonuclease 1, which potentially can be used as sensitizing agent against HT-29 human colon cancer cells. J Agricul Food Chem 2019;67:1656–1665.

    Article  CAS  Google Scholar 

  71. Zhang MJ, Su H, Yan JY, et al. Chemopreventive effect of myricetin, a natural occurring compound, on colonic chronic inflammation and inflammation-driven tumorigenesis in mice. Biomed Pharmacother 2018;97:1131–1137.

    Article  CAS  PubMed  Google Scholar 

  72. Li Y, Cui SX, Sun SY, et al. Chemoprevention of intestinal tumorigenesis by the natural dietary flavonoid myricetin in APCMin/+ mice. Oncotarget 2016;7:60446–60460.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Nirmala P, Ramanathan M. Effect of myricetin on 1,2 dimethylhydrazine induced rat colon carcinogenesis. J Exp Ther Oncol 2011;9:101–108.

    CAS  PubMed  Google Scholar 

  74. Djuric Z, Severson RK, Kato I. Association of dietary quercetin with reduced risk of proximal colon cancer. Nutr Cancer 2012;64:351–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kyle JA, Sharp L, Little J, et al. Dietary flavonoid intake and colorectal cancer: a case-control study. Br J Nutr 2010;103:429–436.

    Article  CAS  PubMed  Google Scholar 

  76. Theodoratou E, Kyle J, Cetnarskyj R, et al. Dietary flavonoids and the risk of colorectal cancer. Cancer Epidemiol Biomark Prev 2007;16:684–693.

    Article  CAS  Google Scholar 

  77. Kim HS, Wannatung T, Lee S, et al. Quercetin enhances hypoxia-mediated apoptosis via direct inhibition of AMPK activity in HCT116 colon cancer. Apoptosis 2012;17:938–949.

    Article  CAS  PubMed  Google Scholar 

  78. Van Hecke T, Wouters A, Rombouts C, et al. Reducing compounds equivocally influence oxidation during digestion of a high-fat beef product, which promotes cytotoxicity in colorectal carcinoma cell lines. J Agricul Food Chem 2016;64:1600–1609.

    Article  CAS  Google Scholar 

  79. Atashpour S, Fouladdel S, Movahhed TK, et al. Quercetin induces cell cycle arrest and apoptosis in CD133(+) cancer stem cells of human colorectal HT29 cancer cell line and enhances anticancer effects of doxorubicin. Iran J Basic Med Sci 2015;18:635–643.

    PubMed  PubMed Central  Google Scholar 

  80. Kim HJ, Kim SK, Kim BS, et al. Apoptotic effect of quercetin on HT-29 colon cancer cells via the AMPK signaling pathway. J Agricultural Food Chem 2010;58:8643–8650.

    Article  CAS  Google Scholar 

  81. Priego S, Feddi F, Ferrer P, et al. Natural polyphenols facilitate elimination of HT-29 colorectal cancer xenografts by chemoradiotherapy: a Bcl-2- and superoxide dismutase 2-dependent mechanism. Mol Cancer Ther 2008;7:3330–3342.

    Article  CAS  PubMed  Google Scholar 

  82. Raja SB, Rajendiran V, Kasinathan NK, et al. Differential cytotoxic activity of Quercetin on colonic cancer cells depends on ROS generation through COX-2 expression. Food Chem Toxicol 2017;106:92–106.

    Article  CAS  PubMed  Google Scholar 

  83. Lee YJ, Curetty L, Hou ZZ, et al. Effect of pH on quercetin-induced suppression of heat shock gene expression and thermotolerance development in HT-29 cells. Biochem Biophys Res Commun 1992;186:1121–1128.

    Article  CAS  PubMed  Google Scholar 

  84. Yang Y, Wang T, Chen D, et al. Quercetin preferentially induces apoptosis in KRAS-mutant colorectal cancer cells via JNK signaling pathways. Cell Biol Int 2019;43:117–124.

    Article  CAS  PubMed  Google Scholar 

  85. Refolo MG, D’Alessandro R, Malerba N, et al. Anti proliferative and proapoptotic effects of flavonoid quercetin are mediated by CB1 receptor in human colon cancer cell lines. J Cell Physiol 2015;230:2973–2980.

    Article  CAS  PubMed  Google Scholar 

  86. Lin C, Yu Y, Zhao HG, et al. Combination of quercetin with radiotherapy enhances tumor radiosensitivity in vitro and in vivo. Radiother Oncol 2012;104:395–400.

    Article  CAS  PubMed  Google Scholar 

  87. Odenthal J, van Heumen BW, Roelofs HM, et al. The influence of curcumin, quercetin, and eicosapentaenoic acid on the expression of phase II detoxification enzymes in the intestinal cell lines HT-29, Caco-2, HuTu 80, and LT97. Nutr Cancer 2012;64:856–863.

    Article  CAS  PubMed  Google Scholar 

  88. Mouat MF, Kolli K, Orlando R, et al. The effects of quercetin on SW480 human colon carcinoma cells: a proteomic study. Nutrition J 2005;4:11.

    Article  Google Scholar 

  89. Bae JH, Kim SJ, Kim MJ, et al. Susceptibility to natural killer cellmediated lysis of colon cancer cells is enhanced by treatment with epidermal growth factor receptor inhibitors through UL16-binding protein-1 induction. Cancer Sci 2012;103:7–16.

    Article  CAS  PubMed  Google Scholar 

  90. Samuel T, Fadlalla K, Mosley L, et al. Dual-mode interaction between quercetin and DNA-damaging drugs in cancer cells. Anticancer Res. 2012;32:61–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Nakayama Y, Sakamoto H, Satoh K, et al. Tamoxifen and gonadal steroids inhibit colon cancer growth in association with inhibition of thymidylate synthase, survivin and telomerase expression through estrogen receptor beta mediated system. Cancer Lett 2000;161:63–71.

    Article  CAS  PubMed  Google Scholar 

  92. Boersma HH, Woerdenbag HJ, Bauer J, et al. Interaction between the cytostatic effects of quercetin and 5-fluorouracil in two human colorectal cancer cell lines. Phytomedicine 1994;1:239–244.

    Article  CAS  PubMed  Google Scholar 

  93. Zhang K, Wong KP, Chow P. Conjugation of chlorambucil with GSH by GST purified from human colon adenocarcinoma cells and its inhibition by plant polyphenols. Life Sci 2003;72:2629–2640.

    Article  CAS  PubMed  Google Scholar 

  94. Zhang K, Wong KP. Glutathione conjugation of chlorambucil: measurement and modulation by plant polyphenols. Biochemical J 1997;325:417–422.

    Article  CAS  Google Scholar 

  95. Koishi M, Hosokawa N, Sato M, et al. Quercetin, an inhibitor of heat shock protein synthesis, inhibits the acquisition of thermotolerance in a human colon carcinoma cell line. Jpn J Cancer Res 1992;83:1216–1222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hosokawa N, Hirayoshi K, Kudo H, et al. Inhibition of the activation of heat shock factor in vivo and in vitro by flavonoids. Mol Cell Biol 1992;12:3490–3498.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Hosokawa N, Hirayoshi K, Nakai A, et al. Flavonoids inhibit the expression of heat shock proteins. Cell Struct Funct 1990;15:393–401.

    Article  CAS  PubMed  Google Scholar 

  98. Lee YJ, Erdos G, Hou ZZ, et al. Mechanism of quercetin-induced suppression and delay of heat shock gene expression and thermotolerance development in HT-29 cells. Mol Cell Biochem 1994;137:141–154.

    Article  CAS  PubMed  Google Scholar 

  99. Pawlikowska-Pawlega B, Jakubowicz-Gil J, Rzymowska J, et al. The effect of quercetin on apoptosis and necrosis induction in human colon adenocarcinoma cell line LS180. Folia Histochem Cytobiol 2001;39:217–218.

    CAS  PubMed  Google Scholar 

  100. Dihal AA, de Boer VC, van der Woude H, et al. Quercetin, but not its glycosidated conjugate rutin, inhibits azoxymethane-induced colorectal carcinogenesis in F344 rats. J Nutr 2006;136:2862–2867.

    Article  CAS  PubMed  Google Scholar 

  101. Deschner EE, Ruperto JF, Wong GY, et al. The effect of dietary quercetin and rutin on AOM-induced acute colonic epithelial abnormalities in mice fed a high-fat diet. Nutr Cancer 1993;20:199–204.

    Article  CAS  PubMed  Google Scholar 

  102. Miyamoto S, Yasui Y, Ohigashi H, et al. Dietary flavonoids suppress azoxymethane-induced colonic preneoplastic lesions in male C57BL/KsJ-db/db mice. Chem Biol Interact 2010;183:276–283.

    Article  CAS  PubMed  Google Scholar 

  103. Warren CA, Paulhill KJ, Davidson LA, et al. Quercetin may suppress rat aberrant crypt foci formation by suppressing inflammatory mediators that influence proliferation and apoptosis. J Nutr 2009;139:101–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Qi J, Yu J, Li Y, et al. Alternating consumption of β-glucan and quercetin reduces mortality in mice with colorectal cancer. Food Sci Nutr 2019;7:3273–3285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Darband SG, Sadighparvar S, Yousefi B, et al. Quercetin attenuated oxidative DNA damage through NRF2 signaling pathway in rats with DMH induced colon carcinogenesis. Life Sci 2020;153:117584.

    Article  Google Scholar 

  106. Dihal AA, van der Woude H, Hendriksen PJ, et al. Transcriptome and proteome profiling of colon mucosa from quercetin fed F344 rats point to tumor preventive mechanisms, increased mitochondrial fatty acid degradation and decreased glycolysis. Proteomics 2008;8:45–61.

    Article  CAS  PubMed  Google Scholar 

  107. Hirose M, Takahashi S, Ogawa K, et al. Phenolics: blocking agents for heterocyclic amine-induced carcinogenesis. Food Chem Toxicol 1999;37:985–992.

    Article  CAS  PubMed  Google Scholar 

  108. Hirose M, Takahashi S, Ogawa K, et al. Chemoprevention of heterocyclic amine-induced carcinogenesis by phenolic compounds in rats. Cancer Lett 1999;143:173–178.

    Article  CAS  PubMed  Google Scholar 

  109. Choi JB, Kim JH, Lee H, et al. Reactive oxygen species and p53 mediated activation of p38 and caspases is critically involved in kaempferol induced apoptosis in colorectal cancer cells. J Agricul Food Chem 2018;66:9960–9967.

    Article  CAS  Google Scholar 

  110. Lee HS, Cho HJ, Yu R, et al. Mechanisms underlying apoptosis-inducing effects of Kaempferol in HT-29 human colon cancer cells. Int J Mol Sci 2014;15:2722–2737.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Nirmala P, Ramanathan M. Effect of kaempferol on lipid peroxidation and antioxidant status in 1,2-dimethyl hydrazine induced colorectal carcinoma in rats. Eur J Pharmacol 2011;654:75–79.

    Article  CAS  PubMed  Google Scholar 

  112. Li Q, Wei L, Lin S, et al. Synergistic effect of kaempferol and 5-fluorouracil on the growth of colorectal cancer cells by regulating the PI3K/Akt signaling pathway. Mol Med Rep 2019;20:728–734.

    CAS  PubMed  Google Scholar 

  113. Riahi-Chebbi I, Souid S, Othman H, et al. The Phenolic compound Kaempferol overcomes 5-fluorouracil resistance in human resistant LS174 colon cancer cells. Sci Rep 2019;9:195.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Yoshida T, Konishi M, Horinaka M, et al. Kaempferol sensitizes colon cancer cells to TRAIL-induced apoptosis. Biochem Biophy Res Commun 2008;375:129–133.

    Article  CAS  Google Scholar 

  115. Shan S, Shi J, Yang P, et al. Apigenin restrains colon cancer cell proliferation via targeted blocking of pyruvate kinase M2-dependent glycolysis. J Agr Food Chem 2017;65:8136–8144.

    Article  CAS  Google Scholar 

  116. Lee Y, Sung B, Kang YJ, et al. Apigenin-induced apoptosis is enhanced by inhibition of autophagy formation in HCT116 human colon cancer cells. Int J Oncol 2014;44:1599–1606.

    Article  CAS  PubMed  Google Scholar 

  117. Chen X, Xu H, Yu X, et al. Apigenin inhibits in vitro and in vivo tumorigenesis in cisplatin-resistant colon cancer cells by inducing autophagy, programmed cell death and targeting m-TOR/PI3K/Akt signalling pathway. J BUON 2019;24:488–493.

    PubMed  Google Scholar 

  118. Banerjee K, Mandal M. Oxidative stress triggered by naturally occurring flavone apigenin results in senescence and chemotherapeutic effect in human colorectal cancer cells. Redox Biol 2015;5:153–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Xu M, Wang S, Song YU, et al. Apigenin suppresses colorectal cancer cell proliferation, migration and invasion via inhibition of the Wnt/beta-catenin signaling pathway. Oncol Lett 2016;11:3075–3080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lin CM, Chen HH, Lin CA, et al. Apigenin-induced lysosomal degradation of beta-catenin in Wnt/beta-catenin signaling. Sci Rep 2017;7:372.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Holzner S, Brenner S, Atanasov AG, et al. Intravasation of SW620 colon cancer cell spheroids through the blood endothelial barrier is inhibited by clinical drugs and flavonoids in vitro. Food Chem Toxicol 2018;111:114–124.

    Article  CAS  PubMed  Google Scholar 

  122. Yang L, Allred KF, Dykes L, et al. Enhanced action of apigenin and naringenin combination on estrogen receptor activation in non-malignant colonocytes: implications on sorghum-derived phytoestrogens. Food Funct 2015;6:749–755.

    Article  CAS  PubMed  Google Scholar 

  123. Li CH, Lin DL Fu XQ, et al. Apigenin up-regulates transgelin and inhibits invasion and migration of colorectal cancer through decreased phosphorylation of AKT. J Nutr Biochem 2013;24:1766–1775.

    Article  Google Scholar 

  124. Dai J, Van Wie PG, Fai LY, et al. Downregulation of NEDD9 by apigenin suppresses migration, invasion, and metastasis of colorectal cancer cells. Toxicol Appl Pharmacol 2016;311:106–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zohreh B, Masoumeh V, Fakhraddin N, et al. Apigenin-mediated alterations in viability and senescence of SW480 colorectal cancer cells persist in the presence of l-thyroxine. Anti-cancer Agent Med Chem 2019;19:1535–1542.

    Article  CAS  Google Scholar 

  126. Wang QR, Yao XQ, Wen G, et al. Apigenin suppresses the growth of colorectal cancer xenografts via phosphorylation and up-regulated FADD expression. Oncol Lett 2011;2:43–47.

    Article  PubMed  Google Scholar 

  127. Leonardi T, Vanamala J, Taddeo SS, et al. Apigenin and naringenin suppress colon carcinogenesis through the aberrant crypt stage in azoxymethane-treated rats. Exp Biol Med 2010;235:710–717.

    Article  CAS  Google Scholar 

  128. Au A, Li B, Wang W, Roy H, et al. Effect of dietary apigenin on colonic ornithine decarboxylase activity, aberrant crypt foci formation, and tumorigenesis in different experimental models. Nutr Cancer 2006;54:243–251.

    Article  CAS  PubMed  Google Scholar 

  129. Cai H, Sale S, Schmid R, et al. Flavones as colorectal cancer chemopreventive agents—phenol-O-methylation enhances efficacy. Cancer Prev Res 2009;2:743–750.

    Article  CAS  Google Scholar 

  130. Sen K, Banerjee S, Mandal M. Dual drug loaded liposome bearing apigenin and 5-Fluorouracil for synergistic therapeutic efficacy in colorectal cancer. Colloid Surface B 2019;180:9–22.

    Article  CAS  Google Scholar 

  131. Shao H, Jing K, Mahmoud E, et al. Apigenin sensitizes colon cancer cells to antitumor activity of ABT-263. Mol Cancer Ther 2013;12:2640–2650.

    Article  CAS  PubMed  Google Scholar 

  132. Lee SW, Lee JT, Lee MG, et al. in vitro antiproliferative characteristics of flavonoids and diazepam on SNU-C4 colorectal adenocarcinoma cells. J Natural Med 2009;63:124–129.

    Article  CAS  Google Scholar 

  133. Horinaka M, Yoshida T, Shiraishi T, et al. The dietary flavonoid apigenin sensitizes malignant tumor cells to tumor necrosis factor-related apoptosis-inducing ligand. Mol Cancer Ther 2006;5:945–951.

    Article  CAS  PubMed  Google Scholar 

  134. Farah M, Parhar K, Moussavi M, et al. 5,6-Dichlororibifuranosylbenzimidazole- and apigenin-induced sensitization of colon cancer cells to TNF-alpha-mediated apoptosis. Am J Physiol Gastrointest Liver Physiol 2003;285:G919–G928.

    Article  CAS  PubMed  Google Scholar 

  135. Chang H, Lei L, Zhou Y, et al. Dietary flavonoids and the risk of colorectal cancer: an updated meta-analysis of epidemiological studies. Nutrients 2018;10950.

  136. Hoensch H, Groh B, Edler L, Kirch W. Prospective cohort comparison of flavonoid treatment in patients with resected colorectal cancer to prevent recurrence. World J Gastroenterol 2008;14:2187–2193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhou J, Zhao R, Ye T, et al. Antitumor activity in colorectal cancer induced by hinokiflavone. J Gastroenterol Hepatol 2019;34:1571–1580.

    Article  CAS  PubMed  Google Scholar 

  138. Cassiem W, de Kock M. The anti-proliferative effect of apricot and peach kernel extracts on human colon cancer cells in vitro. BMC Complement Altern Med 2019;19:32.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Pellerito C, Morana O, Ferrante F, et al. Synthesis, chemical characterization, computational studies and biological activity of new DNA methyltransferases (DNMTs) specific inhibitor. Epigenetic regulation as a new and potential approach to cancer therapy. J Inorg Biochem 2015;150:18–27.

    Article  CAS  PubMed  Google Scholar 

  140. Anantharaju PG, Reddy DB, Padukudru MA, et al. Induction of colon and cervical cancer cell death by cinnamic acid derivatives is mediated through the inhibition of histone deacetylases (HDAC). PLoS One 2017;12:e0186208.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Murad LD, Soares Nda C, Brand C, et al. Effects of caffeic and 5-caffeoylquinic acids on cell viability and cellular uptake in human colon adenocarcinoma cells. Nutr Cancer 2015;67:532–542.

    Article  CAS  PubMed  Google Scholar 

  142. Kang NJ, Lee KW, Kim BH, et al. Coffee phenolic phytochemicals suppress colon cancer metastasis by targeting MEK and TOPK. Carcinogenesis 2011;32:921–928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Al-Asmari AK, Albalawi SM, Athar MT, et al. Moringa oleifera as an anti-cancer agent against breast and colorectal cancer cell lines. PLoS One 2015;10:e0135814.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Majeed H, Antoniou J, Fang Z. Apoptotic effects of eugenol-loaded nanoemulsions in human colon and liver cancer cell lines. Asian Pac Cancer Prev 2014;15:9159–9164.

    Article  Google Scholar 

  145. Jaganathan SK, Mazumdar A, Mondhe D, et al. Apoptotic effect of eugenol in human colon cancer cell lines. Cell Biol Int 2011;35:607–615.

    Article  CAS  PubMed  Google Scholar 

  146. Nakamura Y, Watanabe S, Kageyama M, et al. Antimutagenic; differentiation-inducing; and antioxidative effects of fragrant ingredients in Katsura-uri (Japanese pickling melon; Cucumis melo var. conomon). Mutat Res 2010;703:163–168.

    Article  CAS  PubMed  Google Scholar 

  147. Nasri Nasrabadi P, Zareian S, Nayeri Z, et al. A detailed image of rutin underlying intracellular signaling pathways in human SW480 colorectal cancer cells based on miRNAs-lncRNAs-mRNAs-TFs interactions. J Cell Physiol 2019;234:15570–15580.

    Article  CAS  Google Scholar 

  148. Ben Sghaier M, Pagano A, Mousslim M, et al. Rutin inhibits proliferation, attenuates superoxide production and decreases adhesion and migration of human cancerous cells. Biomed Pharmacother 2016;84:1972–1978.

    Article  CAS  PubMed  Google Scholar 

  149. Vijay M, Sivagami G, Thayalan K, Nalini N. Radiosensitizing potential of rutin against human colon adenocarcinoma HT-29 cells. Brat Lek Listy 2016;117:171–178.

    CAS  Google Scholar 

  150. Kurzawa-Zegota M, Najafzadeh M, Baumgartner A, et al. The protective effect of the flavonoids on food-mutagen-induced DNA damage in peripheral blood lymphocytes from colon cancer patients. Food Chem Toxicol 2012;50:124–129.

    Article  CAS  PubMed  Google Scholar 

  151. Zuo Q, Wu R, Xiao X, et al. The dietary flavone luteolin epigenetically activates the Nrf2 pathway and blocks cell transformation in human colorectal cancer HCT116 cells. J Cell Biochem 2018;119:9573–9582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Yao Y, Rao C, Zheng G, et al. Luteolin suppresses colorectal cancer cell metastasis via regulation of the miR384/pleiotrophin axis. Oncol Rep 2019;42:131–141.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Jang CH, Moon N, Oh J, et al. Luteolin shifts oxaliplatin-induced cell cycle arrest at G0/G to apoptosis in HCT116 human colorectal carcinoma cells. Nutrients 2019;11:770.

    Article  CAS  PubMed Central  Google Scholar 

  154. Krifa M, Leloup L, Ghedira K, Mousli M, et al. Luteolin induces apoptosis in BE colorectal cancer cells by downregulating calpain, UHRF1, and DNMT1 expressions. Nutri Cancer 2014;66:1220–1227.

    Article  CAS  Google Scholar 

  155. Liu Y, Lang T, Jin B, et al. Luteolin inhibits colorectal cancer cell epithelial-to-mesenchymal transition by suppressing CREB1 expression revealed by comparative proteomics study. J Proteom 2017;161:1–10.

    Article  CAS  Google Scholar 

  156. Pandurangan AK, Ananda Sadagopan SK, Dharmalingam P, et al. Luteolin, a bioflavonoid inhibits Azoxymethane-induced colorectal cancer through activation of Nrf2 signaling. Toxicol Mech Methods 2014;24:13–20.

    Article  CAS  PubMed  Google Scholar 

  157. Xavier CP, Lima CF, Rohde M, et al. Quercetin enhances 5-fluorouracil-induced apoptosis in MSI colorectal cancer cells through p53 modulation. Cancer Chemother Pharmacol 2011;68:1449–1457.

    Article  CAS  PubMed  Google Scholar 

  158. Zhao J, Li G, Bo W, et al. Multiple effects of ellagic acid on human colorectal carcinoma cells identified by gene expression profile analysis. Int J Oncol 2017;50:613–621.

    Article  CAS  PubMed  Google Scholar 

  159. Yousef AI, El-Masry OS, Abdel Mohsen MA. Impact of cellular genetic make-up on colorectal cancer cell lines response to ellagic acid: implications of small interfering RNA. Asian Paci J Cancer Prev 2016;17:743–748.

    Article  Google Scholar 

  160. Yousef AI, El-Masry OS, Yassin EH. The anti-oncogenic influence of ellagic acid on colon cancer cells in leptin-enriched microenvironment. Tumour Biol 2016;37:13345–13353.

    Article  CAS  PubMed  Google Scholar 

  161. Gonzalez-Sarrias A, Nunez-Sanchez MA, Tome-Carneiro J, et al. Comprehensive characterization of the effects of ellagic acid and urolithins on colorectal cancer and key-associated molecular hallmarks: microRNA cell specific induction of CDKN1A (p21) as a common mechanism involved. Mol Nutr Food Res 2016;60:701–716.

    Article  CAS  PubMed  Google Scholar 

  162. Cho H, Jung H, Lee H, et al. Chemopreventive activity of ellagitannins and their derivatives from black raspberry seeds on HT-29 colon cancer cells. Food Function 2015;6:1675–1683.

    Article  CAS  PubMed  Google Scholar 

  163. Umesalma S, Nagendraprabhu P, Sudhandiran G. Ellagic acid inhibits proliferation and induced apoptosis via the Akt signaling pathway in HCT-15 colon adenocarcinoma cells. Mol Cell Biochem 2015;399:303–313.

    Article  CAS  PubMed  Google Scholar 

  164. Syed U, Ganapasam S. Beneficial influence of ellagic acid on biochemical indexes associated with experimentally induced colon carcinogenesis. J Cancer Res Ther 2017;13:62–68.

    Article  CAS  PubMed  Google Scholar 

  165. Umesalma S, Nagendraprabhu P, Sudhandiran G. Antiproliferative and apoptotic-inducing potential of ellagic acid against 1,2-dimethyl hydrazine-induced colon tumorigenesis in Wistar rats. Mol Cell Biochem 2014;388:157–172.

    Article  CAS  PubMed  Google Scholar 

  166. Umesalma S, Sudhandiran G. Ellagic acid prevents rat colon carcinogenesis induced by 1, 2 dimethyl hydrazine through inhibition of AKT-phosphoinositide-3 kinase pathway. Eur J Pharmacol 2011;660:249–258.

    Article  CAS  PubMed  Google Scholar 

  167. Kumar KN, Raja SB, Vidhya N, et al. Ellagic acid modulates antioxidant status, ornithine decarboxylase expression, and aberrant crypt foci progression in 1,2-dimethylhydrazine-instigated colon preneoplastic lesions in rats. J Agricul Food Chem 2012;60:3665–3672.

    Article  CAS  Google Scholar 

  168. Gonzalez-Sarrias A, Azorin-Ortuno M, Yanez-Gascon MJ, et al. Dissimilar in vitro and in vivo effects of ellagic acid and its microbiota-derived metabolites, urolithins, on the cytochrome P450 1A1. J Agricul Food Chem 2009;57:5623–5632.

    Article  CAS  Google Scholar 

  169. Umesalma S, Sudhandiran G. Differential inhibitory effects of the polyphenol ellagic acid on inflammatory mediators NF-kappaB, iNOS, COX-2, TNF-alpha, and IL-6 in 1,2-dimethylhydrazine-induced rat colon carcinogenesis. Basic Clin Pharmacol Toxicol 2010;107:650–655.

    Article  CAS  PubMed  Google Scholar 

  170. Umesalma S, Sudhandiran G. Chemomodulation of the antioxidative enzymes and peroxidative damage in the colon of 1,2-dimethyl hydrazine-induced rats by ellagicacid. Phytother Res 2010;24 Suppl 1:S114–S119.

    Article  PubMed  Google Scholar 

  171. Kao TY, Chung YC, Hou YC, et al. Effects of ellagic acid on chemosensitivity to 5-fluorouracil in colorectal carcinoma cells. Anticancer Res 2012;32:4413–4418.

    CAS  PubMed  Google Scholar 

  172. Goyal Y, Koul A, Ranawat P. Ellagic acid ameliorates cisplatin toxicity in chemically induced colon carcinogenesis. Mol Cell Biochem 2019;453:205–215.

    Article  CAS  PubMed  Google Scholar 

  173. Kim WK, Byun WS, Chung HJ, et al. Esculetin suppresses tumor growth and metastasis by targeting Axin2/E-cadherin axis in colorectal cancer. Biochem Pharmacol 2018;152:71–83.

    Article  CAS  PubMed  Google Scholar 

  174. Mira A, Shimizu K. In vitro cytotoxic activities and molecular mechanisms of Angelica shikokiana extract and its isolated compounds. Pharm Magaz 2015;11(Suppl 4):S564–S569.

    Google Scholar 

  175. Kim AD, Madduma Hewage SR, Piao MJ, et al. Esculetin induces apoptosis in human colon cancer cells by inducing endoplasmic reticulum stress. Cell Biochem Funct 2015;33:487–494.

    Article  CAS  PubMed  Google Scholar 

  176. Kaneko T, Tahara S, Takabayashi F. Inhibitory effect of natural coumarin compounds, esculetin and esculin, on oxidative DNA damage and formation of aberrant crypt foci and tumors induced by 1,2-dimethylhydrazine in rat colons. Biol Pharm Bull 2007;30:2052–2057.

    Article  CAS  PubMed  Google Scholar 

  177. Moussavi M, Haddad F, Matin MM, et al. Efficacy of hyperthermia in human colon adenocarcinoma cells is improved by auraptene. Biochem Cell Biol 2018;96:32–37.

    Article  CAS  PubMed  Google Scholar 

  178. Moussavi M, Haddad F, Rassouli FB, et al. Synergy between auraptene, ionizing radiation, and anticancer drugs in colon adenocarcinoma cells. Phytother Res 2017;31:1369–1375.

    Article  CAS  PubMed  Google Scholar 

  179. Xu G, Shi C, Guo D, et al. Functional-segregated coumarin-containing telodendrimer nanocarriers for efficient delivery of SN-38 for colon cancer treatment. Acta Biomat 2015;21:85–98.

    Article  CAS  Google Scholar 

  180. Tong M, Liu H, Hao J, et al. Comparative pharmacoproteomics reveals potential targets for berberine, a promising therapy for colorectal cancer. Biochem Biophy Res Commun 2020.

  181. Piao M, Cao H, He N, et al. Berberine inhibits intestinal polyps growth in APC (Min/+) mice via regulation of macrophage polarization. Evid Based Complement Alternat Med 2016;2016:5137505.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Gong C, Hu X, Xu Y, et al. Berberine inhibits proliferation and migration of colorectal cancer cells by downregulation of GRP78. Anti-cancer Drugs 2020;31:141–149.

    Article  CAS  PubMed  Google Scholar 

  183. Dai W, Mu L, Cui Y, et al. Long noncoding RNA CASC2 enhances berberineinduced cytotoxicity in colorectal cancer cells by silencing BCL2. Mol Med Rep 2019:10326.

  184. Mao L, Chen Q, Gong K, et al. Berberine decelerates glucose metabolism via suppression of mTORdependent HIF1alpha protein synthesis in colon cancer cells. Oncol Rep 2018;39:2436–2442.

    CAS  PubMed  Google Scholar 

  185. La X, Zhang L, Li Z, et al. Berberine-induced autophagic cell death by elevating GRP78 levels in cancer cells. Oncotarget 2017;8:20909–20924.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Dai W, Mu L, Cui Y, et al. Berberine promotes apoptosis of colorectal cancer via regulation of the long non-coding RNA (lncRNA) cancer susceptibility candidate 2 (CASC2)/AU-binding factor 1 (AUF1)/B-cell CLL/lymphoma 2 (Bcl-2) axis. Med Sci Monit 2019;25:730–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Chidambara Murthy KN, Jayaprakasha GK, et al. The natural alkaloid berberine targets multiple pathways to induce cell death in cultured human colon cancer cells. Eur J Pharmacol 2012;688:14–21.

    Article  CAS  PubMed  Google Scholar 

  188. Iizuka N, Hazama S, Yoshimura K, et al. Anticachectic effects of the natural herb Coptidis rhizoma and berberine on mice bearing colon 26/clone 20 adenocarcinoma. Inte J Cancer 2002;99:286–291.

    Article  CAS  Google Scholar 

  189. Huang C, Liu H, Gong XL, et al. Effect of evodiamine and berberine on the interaction between DNMTs and target microRNAs during malignant transformation of the colon by TGF-beta1. Oncol Rep 2017;37:1637–1645.

    Article  CAS  PubMed  Google Scholar 

  190. Liu H, Huang C, Wu L, et al. Effect of evodiamine and berberine on miR-429 as an oncogene in human colorectal cancer. OncoTargets Ther 2016;9:4121–4127.

    Article  CAS  Google Scholar 

  191. Li D, Zhang Y, Liu K, et al. Berberine inhibits colitis-associated tumorigenesis via suppressing inflammatory responses and the consequent EGFR signaling-involved tumor cell growth. Laborat Invest 2017;97:1343–1353.

    Article  CAS  PubMed  Google Scholar 

  192. Liu X, Ji Q, Ye N, et al. Berberine Inhibits Invasion and Metastasis of Colorectal Cancer Cells via COX-2/PGE2 Mediated JAK2/STAT3 Signaling Pathway. PLoS One 2015;10:e0123478.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Li W, Hua B, Saud SM, et al. Berberine regulates AMP-activated protein kinase signaling pathways and inhibits colon tumorigenesis in mice. Mol Carcinogen 2015;54:1096–1109.

    Article  CAS  Google Scholar 

  194. Wu YY, Li TM, Zang LQ, et al. Effects of berberine on tumor growth and intestinal permeability in HCT116 tumor-bearing mice using polyamines as targets. Biomed Pharmacother 2018;107:1447–1453.

    Article  CAS  PubMed  Google Scholar 

  195. Wang H, Guan L, Li J, et al. The effects of berberine on the gut microbiota in APC (Min/+) mice fed with a high fat diet. Molecules 2018;23:2998.

    Google Scholar 

  196. Ghareeb AE, Moawed FSM, Ghareeb DA, et al. Potential prophylactic effect of berberine against rat colon carcinoma induce by 1,2-dimethyl hydrazine. Asian Pac J Cancer Prev 2018;19:1685–1690.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Zhang J, Cao H, Zhang B, et al. Berberine potently attenuates intestinal polyps growth in ApcMin mice and familial adenomatous polyposis patients through inhibition of Wnt signalling. J Cell Mol Med 2013;17:1484–1493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Cai Y, Xia Q, Luo R, et al. Berberine inhibits the growth of human colorectal adenocarcinoma in vitro and in vivo. J Natural Med 2014;68:53–62.

    Article  CAS  Google Scholar 

  199. Thirupurasundari CJ, Padmini R, Devaraj SN. Effect of berberine on the antioxidant status, ultrastructural modifications and protein bound carbohydrates in azoxymethane-induced colon cancer in rats. Chem Biol Interact 2009;177:190–195.

    Article  CAS  PubMed  Google Scholar 

  200. Fukutake M, Yokota S, Kawamura H, et al. Inhibitory effect of Coptidis rhizoma and Scutellariae Radix on azoxymethane-induced aberrant crypt foci formation in rat colon. Biol Pharm Bull 1998;21:814–817.

    Article  CAS  PubMed  Google Scholar 

  201. Su YH, Tang WC, Cheng YW, et al. Targeting of multiple oncogenic signaling pathways by Hsp90 inhibitor alone or in combination with berberine for treatment of colorectal cancer. Biochim Biophy Acta 2015;1853:2261–2272.

    Article  CAS  Google Scholar 

  202. Yu M, Tong X, Qi B, et al. Berberine enhances chemosensitivity to irinotecan in colon cancer via inhibition of NFkappaB. Mol Med Rep 2014;9:249–254.

    Article  CAS  PubMed  Google Scholar 

  203. Yu YN, Yu TC, Zhao HJ, et al. Berberine may rescue Fusobacterium nucleatum-induced colorectal tumorigenesis by modulating the tumor microenvironment. Oncotarget 2015;6:32013–32026.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Chen YX, Gao QY, Zou TH, et al. Berberine versus placebo for the prevention of recurrence of colorectal adenoma: a multicentre, double-blinded, randomised controlled study. Lancet Gastroenterol Hepatol 2020;5:267–275.

    Article  PubMed  Google Scholar 

  205. Antunes-Ricardo M, Moreno-Garcia BE, Gutierrez-Uribe JA, et al. Induction of apoptosis in colon cancer cells treated with isorhamnetin glycosides from Opuntia ficus-indica pads. Plant Food Human Nutr 2014;69:331–336.

    Article  CAS  Google Scholar 

  206. Li C, Yang X, Chen C, et al. Isorhamnetin suppresses colon cancer cell growth through the PI3KAktmTOR pathway. Mol Med Rep 2014;9:935–940.

    Article  CAS  PubMed  Google Scholar 

  207. Seo S, Seo K, Ki SH, et al. Isorhamnetin inhibits reactive oxygen species-dependent hypoxia inducible factor (HIF)-1alpha accumulation. Biol Pharm Bull 2016;39:1830–1838.

    Article  CAS  PubMed  Google Scholar 

  208. Saud SM, Young MR, Jones-Hall YL, et al. Chemopreventive activity of plant flavonoid isorhamnetin in colorectal cancer is mediated by oncogenic Src and beta-catenin. Cancer Res 2013;73:5473–5484.

    Article  CAS  PubMed  Google Scholar 

  209. Koosha S, Mohamed Z, Sinniah A, et al. Investigation into the molecular mechanisms underlying the anti-proliferative and anti-tumorigenesis activities of diosmetin against HCT-116 human colorectal cancer. Sci Rep 2019;9:5148.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Koosha S, Mohamed Z, Sinniah A, et al. Evaluation of anti-tumorigenic effects of diosmetin against human colon cancer xenografts in athymic nude mice. Molecules 2019;24:2522.

    Article  CAS  PubMed Central  Google Scholar 

  211. Wang X, Song ZJ, He X, et al. Antitumor and immunomodulatory activity of genkwanin on colorectal cancer in the APC(Min/+) mice. Int Immunopharmacol 2015;29:701–707.

    Article  CAS  PubMed  Google Scholar 

  212. Ramos S. Cancer chemoprevention and chemotherapy: dietary polyphenols and signalling pathways. Mol Nutr Food Res 2008;52:507–526.

    Article  CAS  PubMed  Google Scholar 

  213. Araujo JR, Goncalves P, Martel F. Chemopreventive effect of dietary polyphenols in colorectal cancer cell lines. Nutr Res 2011;31:77–87.

    Article  CAS  PubMed  Google Scholar 

  214. Sun D, Tao W, Zhang F, et al. Trifolirhizin induces autophagy-dependent apoptosis in colon cancer via AMPK/mTOR signaling. Signal Transduct Target Ther 2020;5:174.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Zhou Q, Chen YG, Xiao J, et al. Traditional Chinese medicine (Xiaoai Jiedu Decoction) as an adjuvant treatment for prevention new colorectal adenomatous polyp occurrence in post-polypectomy: study protocol for a randomized controlled trial. Medicine 2019;98:e16680.

    Article  PubMed  PubMed Central  Google Scholar 

  216. Liu D, Meng X, Wu D, et al. A natural isoquinoline alkaloid with antitumor activity: studies of the biological activities of berberine. Front Pharmacol 2019;10:9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Nkondjock A. Coffee consumption and the risk of cancer: an overview. Cancer Lett 2009;277:121–125.

    Article  CAS  PubMed  Google Scholar 

  218. Shrimali D, Shanmugam MK, Kumar AP, et al. Targeted abrogation of diverse signal transduction cascades by emodin for the treatment of inflammatory disorders and cancer. Cancer Lett 2013;341:139–149.

    Article  CAS  PubMed  Google Scholar 

  219. Buldak RJ, Hejmo T, Osowski M, et al. The impact of coffee and its selected bioactive compounds on the development and progression of colorectal cancer in vivo and in vitro. Molecules 2018;23:3309.

    Article  PubMed Central  Google Scholar 

  220. Santos IS, Ponte BM, Boonme P, et al. Nanoencapsulation of polyphenols for protective effect against colon-rectal cancer. Biotechnol Adv 2013;31:514–523.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Guo TH and Dai GL conceived the structure of article. Guo TH, Li YY, Hong SW, Cao QY, Chen H, and Xu Y searched literature. Guo TH and Hong SW wrote the paper. Guo TH, Li YY and Shao G reviewed and edited the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Guo-liang Dai.

Additional information

Conflict of Interest

There are no confl icts of interest.

Supported by the National Natural Science Foundation of China (No. 81973737)

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Th., Li, Yy., Hong, Sw. et al. Evidence for Anticancer Effects of Chinese Medicine Monomers on Colorectal Cancer. Chin. J. Integr. Med. 28, 939–952 (2022). https://doi.org/10.1007/s11655-022-3466-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-022-3466-2

Keywords

Navigation