Skip to main content

Advertisement

Log in

Low Electrical Resistance Properties of Acupoints: Roles of NOergic Signaling Molecules and Neuropeptides in Skin Electrical Conductance

  • Feature Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Early studies from several independent laboratories demonstrated that acupoints possess the characteristics of low electrical resistance. New devices are developing to increase the reliability of electrical skin impedance measurements for counteracting the factors including skin dryness, skin thickness, size of the sensing electrode, pressure applied on the electrode, interelectrode distance, room temperature, and humidity. Morphological studies have identified that blood vessels, hair follicles, and nervous components are enhanced in the meridians/acupoints, which represent areas of potentially high neuronal activity. Recent evidence shows that nitric oxide (NO) concentrations are enhanced in skin acupoints/meridians. L-arginine-derived NO synthesis modifies skin norepinephrine (NE) synthesis/release in acupoints/meridians, and NO-NE activations play an important role in mediating the skin conductance responses to electrical stimulation. NOergic signaling molecules interact with gap junction and transient receptor potential vanilloid type-1. Other studies reported that the high conductance at acupoints is a result of the release of the neuropeptides substance P and calcitonin gene-related peptide during neurogenic inflammation in the referred pain area. Pathological body conditions caused considerable changes in skin conductance or impedance at acupoints. Although systematic research with an improved equipment and research design to avoid the influencing factors are requested for a definite answer in this field, the results from anatomical and biochemical studies consistently show that acupoints exist higher levels of nervous components, and NOergic signaling molecules and neuropeptides involved in the skin low resistance at acupoints. The increased interest in the acupoints/meridians has led to an open-minded attitude towards understanding this system, which is fundamental important to establish the valid aspects of scientific basis of Chinese medicine mechanisms and therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beijing College of Traditional Chinese Medicine, Shanghai College of Traditional Chinese Medicine, Nanjing College of Traditional Chinese Medicine, The Acupuncture Institute of the Academy of Traditional Chinese Medicine (eds). Essentials of Chinese acupuncture. Beijing: Foreign Languages Press; 1980:301–310.

  2. Novey DW, ed. Clinician's complete reference to complementary & alternative medicine. St. Louis, MO: Mosby Inc; 2000:193.

    Google Scholar 

  3. Chan SH. What is being stimulated in acupuncture: evaluation of the existence of a specific substrate?. Neurosci Biobehav Rev 1984;8:25–33.

    Article  CAS  PubMed  Google Scholar 

  4. Wang GJ, Ayati MH, Zhang WB. Meridian studies in China: a systematic review. J Acupunct Merid Study 2010;3:1–9.

    Article  Google Scholar 

  5. Ahn AC, Colbert AP, Anderson BJ, et al. Electrical properties of acupuncture points and meridians: a systematic review. Bioelectromagnetics 2008;29:245–256.

    Article  PubMed  Google Scholar 

  6. Langevin HM, Wayne PM. What is the point? The problem with acupuncture research. That no one wants to talk about. Altern Complement Med 2018;24:200–207.

    Google Scholar 

  7. Voll R. Twenty years of electroacupuncture diagnosis in Germany. A progress report. Am J Acup 1975;3:7–17.

    Google Scholar 

  8. Goulden EA. The treatment of sciatica by galvanic acupuncture. Br Med J 1921;1:523–524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ahu ZX. Research advances in the electrical specificity of meridians and acupuncture points. Am J Acup 1981;9:203–213.

    Google Scholar 

  10. Chiou SY, Chao CK, Yang YW. Topography of low skin resistance points (LSRP) in rats. Am J Chin Med 1988;26:19–27.

    Article  Google Scholar 

  11. Zhu ZX. The advances and prospect in physiological and biophysical approaches of acupuncture meridian system. Acup Res 1988;2:81–89.

    Google Scholar 

  12. Zhu ZX, Hao JK. Acupuncture meridian biophysics-scientific verification of the first great invention of China. Beijing: Beijing Press; 1989:150–230.

    Google Scholar 

  13. Pearson S, Colbert AP, Mcnames J, et al. Electrical skin impedance at acupuncture points. J Altern Complement Med 2007;13:409–418.

    Article  PubMed  Google Scholar 

  14. Kramer S, Winterhalter K, Schober G, et al. Characteristics of electrical skin resistance at acupuncture points in healthy humans. J Altern Complement Med 2009;15:495–500.

    Article  PubMed  Google Scholar 

  15. Kim DH, Ryu Y, Hahm DH, et al. Acupuncture points can be identified as cutaneous neurogenic inflammatory spots. Sci Rep 2017;7:15214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ahn AC, Martinsen OG. Electrical characterization of acupuncture points: technical issues and challenges. J Altern Complement Med 2007;13:817–824.

    Article  PubMed  Google Scholar 

  17. Martinsen OG, Grimnes S, Morkrid L, et al. Line patterns in the mosaic electrical properties of human skin-a crosscorrelation study. IEEE Trans Biomed Eng 2001;48:731–734.

    Article  CAS  PubMed  Google Scholar 

  18. Shima R, Jiang Z, Fen SY, et al. Development and evaluation of a novel four-electrode device system for monitoring skin impedance. Afr J Tradit Complement Altern Med 2012;9:599–606.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gow BJ, Cheng JL, Baikie ID, et al. Electrical potential of acupuncture points: use of a noncontact scanning Kelvin probe. Evid Based Complement Altern Med 2012;2012:632838.

    Article  Google Scholar 

  20. Ma SX. Enhanced nitric oxide concentrations and expression of nitric oxide synthase in acupuncture points/meridians. J Altern Complement Med 2003;9:207–215.

    Article  PubMed  Google Scholar 

  21. Fan Y, Kim DH, Ryu Y, et al. Neuropeptides SP and CGRP underlie the electrical properties of acupoints. Front Neurosci 2018;12:907.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dippel E, Mayer B, Schonfelder G, et al. Distribution of constitutive nitric oxide synthase immunoreactivity and NADPH-diaphorase activity in murine telogen and anagen skin. J Invest Dermatology 1994;103:112–115.

    Article  CAS  Google Scholar 

  23. Clough GF, Bennett AR, Church MK. Measurement of nitric oxide concentration in human skin in vivo using dermal microdialysis. Experimental Physiol 1998;83:431–434.

    Article  CAS  Google Scholar 

  24. Clough GF. Role of nitric oxide in the regulation of microvascular infusion in human skin in vivo. J Physiol 1999;516:549–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Opländer C, Müller T, Baschin M, et al. Characterization of novel nitrite-based nitric oxide generating delivery systems for topical dermal application. Nitric Oxide 2013;28:24–32.

    Article  PubMed  CAS  Google Scholar 

  26. Raiszadeh MM, Ross MM, Russo PS, et al. Proteomic analysis of eccrine sweat: implications for the discovery of schizophrenia biomarker proteins. J Proteome Res 2012;11:2127–2139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Paunel AN, Dejam A, Thelen S, et al. Enzyme-independent nitric oxide formation during UVA challenge of human skin: characterization, molecular sources, and mechanisms. Free Radic Biol Med 2005;38:606–615.

    Article  CAS  PubMed  Google Scholar 

  28. Weller R, Pattullo S, Smith L, et al. Nitric oxide is generated on the skin surface by reduction of sweat nitrate. J Invest Dermatol 1996;107:327–331.

    Article  CAS  PubMed  Google Scholar 

  29. Suschek CV, Schewe T, Sies H, et al. Nitrite, a naturally occurring precursor of nitric oxide that acts like a ‘prodrug’. Biol Chem 2006;387:499–506.

    Article  CAS  PubMed  Google Scholar 

  30. Weitzberg E, Lundberg JO. Nonenzymatic nitric oxide production in humans. Nitric Oxide 1998;2:1–7.

    Article  CAS  PubMed  Google Scholar 

  31. Ji B, Hu J, Ma SX. Effects of electroacupuncture Zusanli (ST 36) on food intake and expression of POMC and TRPV1 through afferents-medulla pathway in obese prone rats. Peptides 2013;39:188–194.

    Article  CAS  Google Scholar 

  32. Xiong K, Li H, Wang T. Origin of nitric oxide synthase positive nerve fibers at Zusanli area in rats. Chin J Integr Tradit West Med (Chin) 1998;18:230–232.

    CAS  Google Scholar 

  33. Ma SX, Li XY, Sakurai T, et al. Evidence of enhanced nonenzymatic nitric oxide generation on the skin surface of acupuncture points: an innovative approach in humans. Nitric Oxide Biol Chem 2007;17:60–68.

    Article  CAS  Google Scholar 

  34. Ma SX, Li XY, Smith BT, et al. Changes in nitric oxide, cGMP, and nitrotyrosine concentrations over skin along the meridians in obese subjects. Obesity 2011;19:1560–1567.

    Article  CAS  PubMed  Google Scholar 

  35. Ma SX, Lee P, Li XY, et al. Influence of age, gender, and race on nitric oxide release over acupuncture pointsmeridians. Sci Rep 2015; doi:https://doi.org/10.1038/srep17547.

    Google Scholar 

  36. Ma SX, Mayer E, Lee P, et al. Transcutaneous electrical nerve stimulation increased nitric oxide-cyclic cGMP release biocaptured over skin surface of the pericardium meridian and acupuncture points in humans. Acup Electr Therap Res Int J 2015;40:73–86.

    Article  Google Scholar 

  37. Ma SX, Lee P, Anderson TL, et al. Response of local nitric oxide release to manual acupuncture and electrical heat in humans: effects of reinforcement methods. Evid Based Complement Alternat Med 2017;2017:1–8.

    Google Scholar 

  38. Ha Y, Kim M, Nah J, et al. Measurements of locationdependent nitric oxide levels on skin surface in relation to acupuncture point. Evid Based Complement Alternat Med 2012;781460.

    Google Scholar 

  39. Lim N, Ma SX. Responses of nitric oxide-cGMP releases in acupuncture point to electroacupuncture in human skin in vivo using dermal microdialysis. Microcirculation 2009;16:434–443.

    Article  CAS  Google Scholar 

  40. Fan JY, Xi SY, Liu Z, et al. The role of gap junctions in determining skin conductance and their possible relationship to acupuncture points and meridians. Am J Acup 1990;18:163–170.

    Google Scholar 

  41. Zheng JY, Fan JY, Zhang YJ, et al. Further evidence for the role of gap junctions in acupoint information transfer. Am J Acup 1996;24:291–296.

    Google Scholar 

  42. Shang C. The past, present and future of meridian system research. Clin Acup Orient Med 2000;1:115–124.

    Article  Google Scholar 

  43. Hoffmann A, Gloe T, Pohl U, et al. Nitric oxide enhances de novo formation of endothelial gap junctions. Cardiovasc Res 2003;60:421–430.

    Article  CAS  PubMed  Google Scholar 

  44. Cayabyab FS, Daniel EE. K+ channel opening mediates hyperpolarizations by nitric oxide donors and IJPs in opossum esophagus. Am J Physiol 1995;268:G831–G842.

    CAS  PubMed  Google Scholar 

  45. Javid PJ, Watts SW, Webb RC. Inhibition of nitric oxideinduced vasodilation by gap junction inhibitors: a potential role for a cGMP-independent nitric oxide pathway. J Vasc Res 1996;33:395–404.

    Article  CAS  PubMed  Google Scholar 

  46. Carystinos GD, Kandouz M, Alaoui-Jamali MA, et al. Unexpected induction of the human connexin 43 promoter by the ras signaling pathway is mediated by a novel putative promoter sequence. Mol Pharmacol 2003;63:821–831.

    Article  CAS  PubMed  Google Scholar 

  47. Risek B, Klier FG, Gilula NB. Multiple gap junction genes are utilized during rat skin and hair development. Development 1992;116:639–651.

    Article  CAS  PubMed  Google Scholar 

  48. Rare M, Coleman HA, Parkington HC. Glycyrrhetinic derivatives inhibit hyperpolarization in endothelial cells of guinea pig and rat arteries. Am J Physiol Heart Circ Physiol 2002;282:H335–H341.

    Article  Google Scholar 

  49. Ibrahim TS, Chen ML, Ma SX. TRPV1 expression in acupuncture points: response to electroacupuncture stimulation. J Chem Neuroanat 2011;41:129–136.

    Article  CAS  Google Scholar 

  50. Chen HC, Chen MY, Hsieh CL, et al. TRPV1 is a responding channel for acupuncture manipulation in mice peripheral and central nerve system. Cell Physiol Biochem 2018;49:1813–1824.

    Article  CAS  PubMed  Google Scholar 

  51. Guo ZL, Fu LW, Su HF, et al. Role of TRPV1 in acupuncture modulation of reflex excitatory cardiovascular responses. Am J Physiol Regul Integr Comp Physiol 2018;314:R655–R666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sinclair SR, Kane SA, van der Schueren B, et al. Inhibition of capsaicin-induced increase in dermal blood flow by the oral CGRP receptor antagonist, telcagepant (MK-0974). Br J Clin Pharmacol 2010;69:15–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Iyengar S, Ossipov MH, Johnson KW. The role of calcitonin gene-related peptide in peripheral and central pain mechanisms including migraine. Pain 2017;158:543–559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Richardson JD, Vasko MR. Cellular mechanisms of neurogenic inflammation. J Pharmacol Exp Ther 2002;302:839–845.

    Article  CAS  PubMed  Google Scholar 

  55. Kunimoto M, Kirno K, Elam M, et al. Non-linearity of skin resistance response to intraneural electrical stimulation of sudomotor nerves. Acta Physiol Scand 1992;146:385–392.

    Article  CAS  PubMed  Google Scholar 

  56. Chen JX, Ma SX. Effects of nitric oxide and noradrenergic function on skin electric resistance of acupoints and meridians. J Altern Complement Med 2005;11:423–431.

    Article  PubMed  Google Scholar 

  57. Chen JX, Ibe BO, Ma SX. Nitric oxide on modulation of norepinephrine production in acupuncture points. Life Sci 2006;79:2157–2164.

    Article  CAS  PubMed  Google Scholar 

  58. Noll G, Elam M, Kunimoto M, et al. Skin sympathetic nerve activity and effector function during sleep in humans. Acta Physiol Scand 1994;151:319–329.

    Article  CAS  PubMed  Google Scholar 

  59. Bredt DS, Snyder SH. Nitric oxide, a novel neuronal messenger. Neuron 1992;8:3–11.

    Article  CAS  PubMed  Google Scholar 

  60. Moncada S, Higgs EA. Endogenous nitric oxide: physiology, pathology and clinical relevance. Eur J Clin Invest 1991;21:361–374.

    Article  CAS  PubMed  Google Scholar 

  61. Ma SX, Abboud FM, Felder RB. Effects of L-arginine-derived nitric oxide synthesis on neuronal activity in nucleus tractus solitarius. Am J Physiol 1995;268:R487–R491.

    CAS  PubMed  Google Scholar 

  62. Ma SX, Long JP. Effects of nitroglycerin on release, synthesis and metabolism of norepinephrine and activation of tyrosine hydroxylase in guinea-pigs. Eur J Pharmacol 1991;199:27–33.

    Article  CAS  PubMed  Google Scholar 

  63. Ma SX, Long JP. Positive chronotropic and inotropic responses to release of norepinephrine from sympathetic nerve terminals produced by nitroglycerin in atria. Arch Int Pharmacol 1991;309:125–136.

    CAS  Google Scholar 

  64. Lonart J, Wang J, Johnson KM. Nitric oxide induces neurotransmitter release from hippocampal slices. Eur J Pharm 1992;220:271–272.

    Article  CAS  Google Scholar 

  65. Satoh S, Kimura T, Toda M, et al. NO donors stimulate noradrenaline release from rat hippocampus in a calmodulin-dependent manner in the presence of L-cysteine. J Cellular Phys 1996;169:87–96.

    Article  CAS  Google Scholar 

  66. Lonart G, Johnson KM. Characterization of nitric oxide generator-induced hippocampal [3H]norepinephrine release. I. The role of glutamate. J Pharmacol Exper Therap 1995;275:7–13.

    CAS  Google Scholar 

  67. Lonart G, Johnson KM. Characterization of nitric oxide generator-induced hippocampal [3H]norepinephrine release. II. The role of calcium, reverse norepinephrine transport and cyclic 3',5'-guanosine monophosphate. J Pharmacol Exp Ther 1995;275:14–22.

    CAS  PubMed  Google Scholar 

  68. Mbaku EM, Zhang L, Duckles SP, et al. Nitric-oxide synthase-containing nerves facilitate adrenergic transmitter release in sheep middle cerebral arteries. J Pharmacol Exp Ther 2002;293:397–402.

    Google Scholar 

  69. Duckles SP, Emmanuel M, Buchholz. NO enhances noradrenaline release: modulation and mechanism. Auton Autac Pharmacol 2003;23:227–273.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-xing Ma.

Additional information

Conflict of Interest

The author has stated explicitly that there are no conflicts of interest in connection with this article.

Supported by NIH Grant (No. AT002478, AT004620, and AT004504) from the National Center for Complementary and Integrative Health

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Sx. Low Electrical Resistance Properties of Acupoints: Roles of NOergic Signaling Molecules and Neuropeptides in Skin Electrical Conductance. Chin. J. Integr. Med. 27, 563–569 (2021). https://doi.org/10.1007/s11655-021-3318-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-021-3318-5

Keywords

Navigation