Skip to main content

Advertisement

Log in

Combating Drug Resistance in Colorectal Cancer Using Herbal Medicines

  • Review
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) is one of the most prevalent and lethal cancer types around the world. Most of the CRC patients are treated with chemotherapeutic drugs alone or combined. However, up to 90% of metastatic cancer patients experience the failure of treatment mostly because of the acquired drug resistance, which can be led to multidrug resistance (MDR). In this study, we reviewed the recent literature which studied potential CRC MDR reversal agents among herbal medicines (HMs). Among abundant HMs, 6 single herbs, Andrographis paniculata, Salvia miltiorrhiza, Hedyotis diffusa, Sophora flavescens, Curcuma longa, Bufo gargarizans, and 2 formulae, Pien Tze Huang and Zhi Zhen Fang, were found to overcome CRC MDR by two or more different mechanisms, which could be a promising candidate in the development of new drugs for adjuvant CRC chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019 (US statistics). CA Cancer J Clin 2019;69:7–34.

    PubMed  Google Scholar 

  2. Longley D, Johnston P. Molecular mechanisms of drug resistance. J Pathol 2005;205:275–292.

    CAS  PubMed  Google Scholar 

  3. Wang P, Yang HL, Yang YJ, et al. Overcome cancer cell drug resistance using natural products. Evid Based Complement Alternat Med 2015;2015:767136.

    PubMed  PubMed Central  Google Scholar 

  4. Zhao H, Xie H, Li J, et al. Research progress on reversing multidrug resistance in tumors by using Chinese medicine. Chin J Integr Med 2018;24:474–480.

    CAS  PubMed  Google Scholar 

  5. Joshi P, Vishwakarma RA, Bharate SB. Natural alkaloids as P-gp inhibitors for multidrug resistance reversal in cancer. Eur J Med Chem 2017;138:273–292.

    CAS  PubMed  Google Scholar 

  6. Eichhorn T, Efferth T. P-glycoprotein and its inhibition in tumors by phytochemicals derived from Chinese herbs. J Ethnopharmacol 2012;141:557–570.

    CAS  PubMed  Google Scholar 

  7. Holohan C, Sandra Van Schaeybroeck DBL, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 2013;13:714–726.

    CAS  PubMed  Google Scholar 

  8. Taylor ST, Hickman JA, Dive C. Epigenetic determinants of resistance to etoposide regulation of Bcl-X(L) and Bax by tumor microenvironmental factors. J Natl Cancer Inst 2000;92:18–23.

    CAS  PubMed  Google Scholar 

  9. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2002;2:48–58.

    CAS  PubMed  Google Scholar 

  10. Choi CH. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell Int 2005;5:30.

    PubMed  PubMed Central  Google Scholar 

  11. Nakahara T, Sakaeda T, Nakamura T, et al. Chemosensitivity assessed by collagen gel droplet embedded culture drug sensitivity test, and MDR1, MRP1, and MRP2 mRNA expression in human colorectal adenocarcinomas. Pharm Res 2004;21:406–412.

    CAS  PubMed  Google Scholar 

  12. Cao D, Qin S, Mu Y, et al. The role of MRP1 in the multidrug resistance of colorectal cancer. Oncol Lett 2017;13:2471–2476.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nielsen DL, Palshof JA, Brünner N, et al. Implications of ABCG2 expression on irinotecan treatment of colorectal cancer patients: a review. Int J Mol Sci 2017;18:1926.

    PubMed Central  Google Scholar 

  14. Pratt S, Shepard RL, Kandasamy RA, et al. The multidrug resistance protein 5 (ABCC5) confers resistance to 5-fluorouracil and transports its monophosphorylated metabolites. Mol Cancer Ther 2005;4:855–863.

    CAS  PubMed  Google Scholar 

  15. Martinez-Balibrea E, Martínez-Cardús A, Musulén E, et al. Increased levels of copper efflux transporter ATP7B are associated with poor outcome in colorectal cancer patients receiving oxaliplatin-based chemotherapy. Int J Cancer 2009;124:2905–2910.

    CAS  PubMed  Google Scholar 

  16. Ekblad L, Kjellström J, Johnsson A. Reduced drug accumulation is more important in acquired resistance against oxaliplatin than against cisplatin in isogenic colon cancer cells. Anticancer Drugs 2010;21:523–531.

    CAS  PubMed  Google Scholar 

  17. Cui H, Zhang AJ, Chen M, et al. ABC transporter inhibitors in reversing multidrug resistance to chemotherapy. Curr Drug Targets 2015;16:1356–1371.

    CAS  PubMed  Google Scholar 

  18. Talekar M, Ouyang Q, Goldberg MS, et al. Cosilencing of PKM-2 and MDR-1 sensitizes multidrug-resistant ovarian cancer cells to paclitaxel in a murine model of ovarian cancer. Mol Cancer Ther 2015;14:1521–1531.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Greenblatt MS, Bennett WP, Hollstein M, et al. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 1994;54:4855–4878.

    CAS  PubMed  Google Scholar 

  20. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990;61:759–767.

    CAS  Google Scholar 

  21. Boyer J, McLean EG, Aroori S, et al. Characterization of p53 wild-type and null isogenic colorectal cancer cell lines resistant to 5-fluorouracil, oxaliplatin, and irinotecan. Clin Cancer Res 2004;10:2158–2167.

    CAS  PubMed  Google Scholar 

  22. Bunz F, Hwang PM, Torrance C, et al. Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest 1999;104:263–269.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu Y, Wang L, Lu X. A new way to target p53-defective colorectal cancer. Futur Oncol 2015;11:3101–3104.

    CAS  Google Scholar 

  24. Fulda S. Tumor resistance to apoptosis. Int J Cancer 2009;124:511–515.

    CAS  PubMed  Google Scholar 

  25. White E. Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 2012;12:401–410.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sasaki K, Tsuno NH, Sunami E, et al. Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells. BMC Cancer 2010;10:370.

    PubMed  PubMed Central  Google Scholar 

  27. Ayadi M, Bouygues A, Ouaret D, et al. Chronic chemotherapeutic stress promotes evolution of stemness and WNT/beta-catenin signaling in colorectal cancer cells: implications for clinical use of WNT-signaling inhibitors. Oncotarget 2015;6:18518–18533.

    PubMed  PubMed Central  Google Scholar 

  28. Dalerba P, Dylla SJ, Park IK, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci 2007;104:10158–10163.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang EH, Hynes MJ, Zhang T, et al. Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res 2009;69:3382–3389.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Martinez-Balibrea E, Martínez-Cardús A, Ginés A, et al. Tumor-related molecular mechanisms of oxaliplatin resistance. Mol Cancer Ther 2015;14:1767–1776.

    CAS  PubMed  Google Scholar 

  31. Lewis AD, Forrester LM, Hayes JD, et al. Glutathione S-transferase isoenzymes in human tumours and tumour derived cell lines. Br J Cancer 1989;60:327–331.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Johnston PG, Lenz HJ, Leichman CG, et al. Thymidylate synthase gene and protein expression correlate and are associated with response to 5-fluorouracil in human colorectal and gastric tumors. Cancer Res 1995;55:1407–1412.

    CAS  PubMed  Google Scholar 

  33. Sugimoto Y, Tsukahara S, Ohhara T, et al. Decreased expression of DNA topoisomerase I in camptothecin-resistant tumor cell lines as determined by a monoclonal antibody. Cancer Res 1990;50:6925–6930.

    CAS  PubMed  Google Scholar 

  34. Kirschner K, Melton DW. Multiple roles of the ERCC1-XPF endonuclease in DNA repair and resistance to anticancer drugs. Anticancer Res 2010;30:3223–3232.

    CAS  PubMed  Google Scholar 

  35. Fuchs BC, Fujii T, Dorfman JD, et al. Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells. Cancer Res 2008;68:2391–2399.

    CAS  PubMed  Google Scholar 

  36. Shen A, Chen H, Chen Y, et al. Pien Tze Huang overcomes multidrug resistance and epithelial-mesenchymal transition in human colorectal carcinoma cells via suppression of TGF-β pathway. Evid Based Complement Alternat Med 2014;2014:679436.

    PubMed  PubMed Central  Google Scholar 

  37. Kumar RA, Sridevi K, Kumar NV, et al. Anticancer and immunostimulatory compounds from Andrographis paniculata. J Ethnopharmacol 2004;92:291–295.

    CAS  PubMed  Google Scholar 

  38. Lee GY, Joung JY, Cho JH, et al. Overcoming P-glycoprotein-mediated multidrug resistance in colorectal cancer: potential reversal agents among herbal medicines. Evid Based Complement Alternat Med 2018;12:3412074.

    Google Scholar 

  39. Han Y, Bu LM, Ji X, et al. Modulation of multidrug resistance by andrographolid in a HCT-8/5-FU multidrug-resistant colorectal cancer cell line. Chin J Dig Dis 2005;6:82–86.

    PubMed  Google Scholar 

  40. Wang W, Guo W, Li L, et al. Andrographolide reversed 5-FU resistance in human colorectal cancer by elevating BAX expression. Biochem Pharmacol 2016;121:8–17.

    CAS  PubMed  Google Scholar 

  41. Wang J, Chen C, Wang S, et al. Bufalin inhibits HCT116 colon cancer cells and its orthotopic xenograft tumor in mice model through genes related to apoptotic and PTEN/AKT pathways. Gastroenterol Res Pract 2015;2015:1–10.

    Google Scholar 

  42. Qiu Y, Hu Q, Tang Q, et al. MicroRNA-497 and bufalin act synergistically to inhibit colorectal cancer metastasis. Tumor Biol 2014;35:2599–2606.

    CAS  Google Scholar 

  43. Liu T, Jia T, Yuan X, et al. Development of octreotide-conjugated polymeric prodrug of bufalin for targeted delivery to somatostatin receptor 2 overexpressing breast cancer in vitro and in vivo. Int J Nanomed 2016;11:2235–2250.

    CAS  Google Scholar 

  44. Wu SH, Bau DT, Hsiao YT, et al. Bufalin induces apoptosis in vitro and has antitumor activity against human lung cancer xenografts in vivo. Environ Toxicol 2017;32:1305–1317.

    CAS  PubMed  Google Scholar 

  45. Yuan ZT, Shi XJ, Yuan YX, et al. Bufalin reverses ABCB1-mediated drug resistance in colorectal cancer. Oncotarget 2017;8:48012–48026.

    PubMed  PubMed Central  Google Scholar 

  46. Sun J, Xu K, Qiu Y, et al. Bufalin reverses acquired drug resistance by inhibiting stemness in colorectal cancer cells. Oncol Rep 2017;38:1420–1430.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yuan Z, Shi X, Qiu Y, et al. Reversal of P-gp-mediated multidrug resistance in colon cancer by cinobufagin. Oncol Rep 2017;37:1815–1825.

    CAS  PubMed  Google Scholar 

  48. Gu M, Zhang G, Su Z, et al. Identification of major active constituents in the fingerprint of Salvia miltiorrhiza Bunge developed by high-speed counter-current chromatography. J Chromatogr A 2004;1041:239–243.

    CAS  PubMed  Google Scholar 

  49. Zhang J, Huang M, Guan S, et al. A mechanistic study of the intestinal absorption of cryptotanshinone, the major active constituent of Salvia miltiorrhiza. J Pharmacol Exp Ther 2006;317:1285–1294.

    CAS  PubMed  Google Scholar 

  50. Hu T, To KKW, Wang L, et al. Reversal of P-glycoprotein (Pgp) mediated multidrug resistance in colon cancer cells by cryptotanshinone and dihydrotanshinone of Salvia miltiorrhiza. Phytomedicine 2014;21:1264–1272.

    CAS  PubMed  Google Scholar 

  51. Hu T, Wang L, Zhang L, et al. Sensitivity of apoptosis-resistant colon cancer cells to tanshinones is mediated by autophagic cell death and p53-independent cytotoxicity. Phytomedicine 2015;22:536–544.

    CAS  PubMed  Google Scholar 

  52. Xu Z, Jiang H, Zhu Y, et al. Cryptotanshinone induces ROS-dependent autophagy in multidrug-resistant colon cancer cells. Chem Biol Interact 2017;273:48–55.

    CAS  PubMed  Google Scholar 

  53. Guo P, Wang S, Liang W, et al. Salvianolic acid B reverses multidrug resistance in HCT-8/VCR human colorectal cancer cells by increasing ROS levels. Mol Med Rep 2017;15:724–730.

    CAS  PubMed  Google Scholar 

  54. Hanif R, Qiao L, Shiff SJ, et al. Curcumin, a natural plant phenolic food additive, inhibits cell proliferation and induces cell cycle changes in colon adenocarcinoma cell lines by a prostaglandin-independent pathway. J Lab Clin Med 1997;130:576–584.

    CAS  PubMed  Google Scholar 

  55. Chauhan DP. Chemotherapeutic potential of curcumin for colorectal cancer. Curr Pharm Des 2002;8:1695–1706.

    CAS  PubMed  Google Scholar 

  56. Lu WD, Qin Y, Yang C, et al. Effect of curcumin on human colon cancer multidrug resistance in vitro and in vivo. Clinics 2013;68:694–701.

    PubMed  PubMed Central  Google Scholar 

  57. Ruiz De Porras V, Bystrup S, Martínez-Cardús A, et al. Curcumin mediates oxaliplatin-acquired resistance reversion in colorectal cancer cell lines through modulation of CXC-Chemokine/NF-κB signalling pathway. Sci Rep 2016;6:24675.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Nautiyal J, Kanwar SS, Yu Y, et al. Combination of dasatinib and curcumin eliminates chemo-resistant colon cancer cells. J Mol Signal 2011;6:7.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Buhrmann C, Kraehe P, Lueders C, et al. Curcumin suppresses crosstalk between colon cancer stem cells and stromal fibroblasts in the tumor microenvironment: potential role of EMT. PLoS One 2014;9:e107514.

    PubMed  PubMed Central  Google Scholar 

  60. Lin L, Liu Y, Li H, et al. Targeting colon cancer stem cells using a new curcumin analogue, GO-Y030. Br J Cancer 2011;105:212–220.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kanwar SS, Yu Y, Nautiyal J, et al. Difluorinated-curcumin (CDF): a novel curcumin analog is a potent inhibitor of colon cancer stem-like cells. Pharm Res 2011;28:827–838.

    CAS  PubMed  Google Scholar 

  62. Roy S, Yu Y, Padhye SB, et al. Difluorinated-curcumin (CDF) restores PTEN expression in colon cancer cells by down-regulating miR-21. PLoS One 2013;8:e68543.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang Y, Ning Z, Yang S, et al. Antioxidation properties and mechanism of action of dihydromyricetin from Ampelopsis grossedentata. Acta Pharm Sin (Chin) 2003;38:241–244.

    Google Scholar 

  64. Chen T, Zhu S, Lu Y, et al. Probing the interaction of anti-cancer agent dihydromyricetin with human serum albumin: a typical method study. Anticancer Agents Med Chem 2012;12:919–928.

    CAS  PubMed  Google Scholar 

  65. Wu S, Liu B, Zhang Q, et al. Dihydromyricetin reduced Bcl-2 expression via p53 in human hepatoma HepG2 cells. PLoS One 2013;8:e76886.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhao Z, Yin JQ, Wu MS, et al. Dihydromyricetin activates AMP-activated protein kinase and p38MAPK exerting antitumor potential in osteosarcoma. Cancer Prev Res 2014;7:927–938.

    CAS  Google Scholar 

  67. Wang Z, Sun X, Feng Y, et al. Dihydromyricetin reverses MRP2-mediated MDR and enhances anticancer activity induced by oxaliplatin in colorectal cancer cells. Anticancer Drugs 2017;28:281–288.

    CAS  PubMed  Google Scholar 

  68. Wang Z, Zhang L, Ni Z, et al. Resveratrol induces AMPK-dependent MDR1 inhibition in colorectal cancer HCT116/L-OHP cells by preventing activation of NF-κB signaling and suppressing cAMP-responsive element transcriptional activity. Tumor Biol 2015;36:9499–9510.

    CAS  Google Scholar 

  69. Hwang JT, Kwak DW, Lin SK, et al. Resveratrol induces apoptosis in chemoresistant cancer cells via modulation of AMPK signaling pathway. Ann N Y Acad Sci 2007;1095:441–448.

    CAS  PubMed  Google Scholar 

  70. Huang L, Zhang S, Zhou J, et al. Effect of resveratrol on drug resistance in colon cancer chemotherapy. RSC Adv 2019;9:2572–2580.

    CAS  Google Scholar 

  71. Eid SY, El-Readi MZ, Ashour ML, et al. Fallopia japonica, a natural modulator, can overcome multidrug resistance in cancer cells. Evid Based Complement Alternat Med 2015;2015:868424.

    PubMed  PubMed Central  Google Scholar 

  72. Wang J, Yuan Z. Gambogic acid sensitizes ovarian cancer cells to doxorubicin through ROS-mediated apoptosis. Cell Biochem Biophys 2013;67:199–206.

    CAS  PubMed  Google Scholar 

  73. Wang T, Wei J, Qian X, et al. Gambogic acid, a potent inhibitor of survivin, reverses docetaxel resistance in gastric cancer cells. Cancer Lett 2008;262:214–222.

    CAS  PubMed  Google Scholar 

  74. Yang P, Cao J, Tan MH, et al. Reversal of resistance to Oxaliplatin in human colon cancer by gambogic acid. Chin Arch Gen Surg (Elect Ed, Chin) 2013;07.

  75. Wang Q, Wei J, Wang C, et al. Gambogic acid reverses oxaliplatin resistance in colorectal cancer by increasing intracellular platinum levels. Oncol Lett 2018;16:2366–2372.

    PubMed  PubMed Central  Google Scholar 

  76. Li Q, Wang X, Shen A, et al. Hedyotis diffusa Willd overcomes 5-fluorouracil resistance in human colorectal cancer HCT-8/5-FU cells by downregulating the expression of P-glycoprotein and ATP-binding casette subfamily G member 2. Exp Ther Med 2015;10:1845–1850.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Sun G, Wei L, Feng J, et al. Inhibitory effects of Hedyotis diffusa Willd. on colorectal cancer stem cells. Oncol Lett 2016;11:3875–3881.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang Y, Huang L, Shi H, et al. Ursolic acid enhances the therapeutic effects of oxaliplatin in colorectal cancer by inhibition of drug resistance. Cancer Sci 2018;109:94–102.

    CAS  PubMed  Google Scholar 

  79. Xavier CPR, Lima CF, Pedro DFN, et al. Ursolic acid induces cell death and modulates autophagy through JNK pathway in apoptosis-resistant colorectal cancer cells. J Nutr Biochem 2013;24:706–712.

    CAS  PubMed  Google Scholar 

  80. Wang J, Liu L, Qiu H, et al. Ursolic acid simultaneously targets multiple signaling pathways to suppress proliferation and induce apoptosis in colon cancer cells. PLoS One 2013;8:e63872.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Li Y, Li Y, Chen X, et al. Autophagy is involved in anticancer effects of matrine on SGC-7901 human gastric cancer cells. Oncol Rep 2011;26:115–124.

    CAS  PubMed  Google Scholar 

  82. Li H, Tan G, Jiang X, et al. Therapeutic effects of matrine on primary and metastatic breast cancer. Am J Chin Med 2010;38:1115–1130.

    CAS  PubMed  Google Scholar 

  83. Ren H, Zhang S, Ma H, et al. Matrine reduces the proliferation and invasion of colorectal cancer cells via reducing the activity of p38 signaling pathway. Acta Biochim Biophys Sin (Chin) 2014;46:1049–1055.

    CAS  Google Scholar 

  84. Chang C, Liu SP, Fang CH, et al. Effects of matrine on the proliferation of HT29 human colon cancer cells and its antitumor mechanism. Oncol Lett 2013;6:699–704.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Duan L, Deng L, Wang D, et al. Treatment mechanism of matrine in combination with irinotecan for colon cancer. Oncol Lett 2017;14:2300.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang D, Zhang Y. The Reversal effects of matrine on the multi-drug resistance of oxaliplatin in human colon HT-29 cells and its mechanism research. J Hunan Univ Chin Med (Chin) 2016;36:22–26.

    Google Scholar 

  87. Su J, Jiang Q, Huang G, et al. Effect of matrine on chemotherapeutic drug sensitivity and autophagy levels in colon cancer resistant cells. Chin Youjiang Med J (Chin) 2016;44:610–613.

    Google Scholar 

  88. Zhong ZQ, Huang GL, Huang ZS, et al. Oxymartrine reverses multidrug resistance of human colon cancer cell lines and its mechanism. J Youjiang Med Coll Natl (Chin) 2017;39:17–21.

    Google Scholar 

  89. Feng X, Li L, Jiang H, et al. Dihydroartemisinin potentiates the anticancer effect of cisplatin via mTOR inhibition in cisplatin-resistant ovarian cancer cells: involvement of apoptosis and autophagy. Biochem Biophys Res Commun 2014;444:376–381.

    CAS  PubMed  Google Scholar 

  90. Kang XJ, Wang HY, Peng HG, et al. Codelivery of dihydroartemisinin and doxorubicin in mannosylated liposomes for drug-resistant colon cancer therapy. Acta Pharmacol Sin 2017;38:885–896.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Ma G, Chong L, Li XC, et al. Selective inhibition of human leukemia cell growth and induction of cell cycle arrest and apoptosis by pseudolaric acid B. J Cancer Res Clin Oncol 2010;136:1333–1340.

    CAS  PubMed  Google Scholar 

  92. Yu F, Li K, Chen S, et al. Pseudolaric acid B circumvents multidrug resistance phenotype in human gastric cancer SGC7901/ADR cells by downregulating cox-2 and p-gp expression. Cell Biochem Biophys 2015;71:119–126.

    CAS  PubMed  Google Scholar 

  93. Wong VK, Chiu P, Chung SS, et al. Pseudolaric acid B, a novel microtubule-destabilizing agent that circumvents multidrug resistance phenotype and exhibits antitumor activity in vivo. Clin Cancer Res 2005;11:6002–6011.

    CAS  PubMed  Google Scholar 

  94. Wen C, Chen J, Zhang D, et al. Pseudolaric acid B induces mitotic arrest and apoptosis in both 5-fluorouracil-sensitive and -resistant colorectal cancer cells. Cancer Lett 2016;383:295–308.

    CAS  PubMed  Google Scholar 

  95. Liu J, Guo W, Xu B, et al. Angiogenesis inhibition and cell cycle arrest induced by treatment with pseudolarix acid B alone or combined with 5-fluorouracil. Acta Biochim Biophys Sin (Chin) 2012;44:490–502.

    CAS  Google Scholar 

  96. Liu MP, Liao M, Dai C, et al. Sanguisorba officinalis L synergistically enhanced 5-fluorouracil cytotoxicity in colorectal cancer cells by promoting a reactive oxygen species-mediated, mitochondria-caspase-dependent apoptotic pathway. Sci Rep 2016;6:34245.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang CZ, McEntee E, Wicks S, et al. Phytochemical and analytical studies of Panax notoginseng (Burk.) F.H. Chen. J Nat Med 2006;60:97–106.

    CAS  Google Scholar 

  98. Zheng Y, Nan H, Hao M, et al. Antiproliferative effects of protopanaxadiol ginsenosides on human colorectal cancer cells. Biomed reports 2013;1:555–558.

    CAS  Google Scholar 

  99. Phi LTH, Wijaya YT, Sari IN, et al. The anti-metastatic effect of ginsenoside Rb2 in colorectal cancer in an EGFR/SOX2-dependent manner. Cancer Med 2018;7:5621–5631.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Liu G, Liu Y, Jiang G, et al. The reversal effect of Ginsenoside Rh2 on drug resistance in human colorectal carcinoma cells and its mechanism. Hum Cell 2018;31:189–198.

    CAS  PubMed  Google Scholar 

  101. Li HB, Chen F. Isolation and purification of baicalein, wogonin and oroxylin A from the medicinal plant Scutellaria baicalensis by high-speed counter-current chromatography. J Chromatogr A 2005;1074:107–110.

    CAS  PubMed  Google Scholar 

  102. Kim DH, Hossain MA, Kang YJ, et al. Baicalein, an active component of Scutellaria baicalensis Georgi, induces apoptosis in human colon cancer cells and prevents AOM/DSS-induced colon cancer in mice. Int J Oncol 2013;43:1652–1658.

    CAS  PubMed  Google Scholar 

  103. Kim DH, Sung B, Chung HY, et al. Modulation of colitis-associated colon tumorigenesis by baicalein and betaine. J Cancer Prev 2014;19:153–160.

    PubMed  PubMed Central  Google Scholar 

  104. Tao Y, Zhan S, Wang Y, et al. Baicalin, the major component of traditional Chinese medicine Scutellaria baicalensis induces colon cancer cell apoptosis through inhibition of oncomiRNAs. Sci Rep 2018;8:14477.

    PubMed  PubMed Central  Google Scholar 

  105. Wang H, Zhao L, Zhu LT, et al. Wogonin reverses hypoxia resistance of human colon cancer HCT116 cells via downregulation of HIF-1α and glycolysis, by inhibiting PI3K/Akt signaling pathway. Mol Carcinog 2014;53:E107–E118.

    CAS  PubMed  Google Scholar 

  106. Gao J, Yin W, Corcoran O. From Scutellaria barbata to BZL101 in cancer patients: phytochemistry, pharmacology, and clinical evidence. Nat Prod Commun 2019;14:1–12.

    Google Scholar 

  107. Lin J, Feng J, Yang H, et al. Scutellaria barbata D. Don inhibits 5-fluorouracil resistance in colorectal cancer by regulating PI3K/AKT pathway. Oncol Rep 2017;38:2293–2300.

    CAS  PubMed  Google Scholar 

  108. Syed SB, Arya H, Fu IH, et al. Targeting P-glycoprotein: Investigation of piperine analogs for overcoming drug resistance in cancer. Sci Rep 2017;7:7972.

    PubMed  PubMed Central  Google Scholar 

  109. Guamán Ortiz LM, Croce AL, Aredia F, et al. Effect of new berberine derivatives on colon cancer cells. Acta Biochim Biophys Sin (Chin) 2015;47:824–833.

    Google Scholar 

  110. Zhang Y, Sun X, Xu J, et al. Effects of medicated serum prepared with Chinese herbal medicine Changweiqing on pharmacokinetics of oxaliplatin in colon cancer cells. J Chin Integr Med (Chin) 2012;10:901–910.

    Google Scholar 

  111. Xu J, Deng W, Fan Z. Effects of changwelqing on nuclear translocation of Y-box binding protein-1 and expression of P-glycoprotein in human colon cancer cell line with drug-resistance induced by vincristine. Chin J Integr Tradit West Med (Chin) 2010;30:743–747.

    Google Scholar 

  112. Li J, Fan Z, Sun J, et al. In vitro antimetastatic effect of Changweiqing through antiinvasion of hypoxic colorectal carcinoma LoVo cells. Chin J Integr Med 2011;17:517–524.

    PubMed  Google Scholar 

  113. Sui H, Zhu H, Wu J, et al. Effects of Jianpi Jiedu Recipe on reversion of P-glycoprotein-mediated multidrug resistance through COX-2 pathway in colorectal cancer. Chin J Integr Med 2014;20:610–617.

    PubMed  Google Scholar 

  114. Liu X, Ji Q, Deng W, et al. Jianpi Jiedu Recipe inhibits epithelial-to-mesenchymal transition in colorectal cancer through TGF-β/Smad mediated snail/E-cadherin expression. Biomed Res Int 2017;2017:2613198.

    PubMed  PubMed Central  Google Scholar 

  115. Lin J, Wei L, Chen Y, et al. Pien Tze Huang-induced apoptosis in human colon cancer HT-29 cells is associated with regulation of the Bcl-2 family and activation of caspase 3. Chin J Integr Med 2011;17:685–690.

    PubMed  Google Scholar 

  116. Zhuang Q, Hong F, Shen A, et al. Pien Tze Huang inhibits tumor cell proliferation and promotes apoptosis via suppressing the STAT3 pathway in a colorectal cancer mouse model. Int J Oncol 2012;40:1569–1574.

    CAS  PubMed  Google Scholar 

  117. Shen AL, Hong F, Liu LY, et al. Effects of Pien Tze Huang on angiogenesis in vivo and in vitro. Chin J Integr Med 2012;18:431–436.

    PubMed  Google Scholar 

  118. Shen A, Hong F, Liu L, et al. Pien Tze Huang inhibits the proliferation of human colon carcinoma cells by arresting G1/S cell cycle progression. Oncol Lett 2012;4:767–770.

    PubMed  PubMed Central  Google Scholar 

  119. Wei L, Chen P, Chen Y, et al. Pien Tze Huang suppresses the stem-like side population in colorectal cancer cells. Mol Med Rep 2014;9:261–266.

    CAS  PubMed  Google Scholar 

  120. Sun A, Chia JS, Chiang CP, et al. The Chinese herbal medicine Tien-Hsien Liquid inhibits cell growth and induces apoptosis in a wide variety of human cancer cells. J Altern Complement Med 2005;11:245–256.

    PubMed  Google Scholar 

  121. Sze SC, Wong KL, Liu WK, et al. Regulation of p21, MMP-1, and MDR-1 expression in human colon carcinoma HT29 cells by Tian Xian Liquid, a Chinese medicinal formula, in vitro and in vivo. Integr Cancer Ther 2011;10:58–69.

    CAS  PubMed  Google Scholar 

  122. Sui H, Duan P, Guo P, et al. Zhi Zhen Fang formula reverses Hedgehog pathway mediated multidrug resistance in colorectal cancer. Oncol Rep 2017;38:2087–2095.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Cai S, Zhang X, Chen Z, et al. Medicated serum prepared with Chinese herbal medicine Zhizhen Recipe down-regulates activity of nuclear factor-κB and expression of P-glycoprotein in human colorectal cancer multidrug-resistant cell line HCT-8/VCR. J Chin Integr Med (Chin) 2011;9:1353–1359.

    Google Scholar 

  124. Wang X, Xu L, Peng J. In vivo inhibition of S180 tumors by the synergistic effect of the Chinese medicinal herbs Coptis chinensis and Evodia rutaecarpa. Planta Med 2009;75:1215–1220.

    CAS  PubMed  Google Scholar 

  125. Sui H, Liu X, Jin BH, et al. Zuo Jin Wan, a traditional chinese herbal formula, reverses P-gp-mediated MDR in vitro and in vivo. Evid Based Complement Alternat Med 2013;2013:265–269.

    Google Scholar 

  126. Yu C, Liu SL, Qi MH, et al. Herbal medicine Guan Chang Fu Fang enhances 5-fluorouracil cytotoxicity and affects drug-associated genes in human colorectal carcinoma cells. Oncol Lett 2015;9:701–708.

    PubMed  Google Scholar 

  127. Liu SH, Cheng YC. Old formula, new Rx: the journey of PHY906 as cancer adjuvant therapy. J Ethnopharmacol 2012;140:614–623.

    CAS  PubMed  Google Scholar 

  128. Liu H, Liu H, Zhou Z, et al. Herbal formula Huang Qin Ge Gen Tang enhances 5-fluorouracil antitumor activity through modulation of the E2F1/TS pathway. Cell Commun Signal 2018;16:7.

    PubMed  PubMed Central  Google Scholar 

  129. Chattopadhyay D, Dungdung SR, Mandal AB, et al. A potent sperm motility-inhibiting activity of bioflavonoids from an ethnomedicine of Onge, Alstonia macrophylla Wall ex A. DC, leaf extract. Contraception 2005;71:372–378.

    CAS  PubMed  Google Scholar 

  130. Messner B, Zeller I, Ploner C, et al. Ursolic acid causes DNA-damage, P53-mediated, mitochondria- and caspase-dependent human endothelial cell apoptosis, and accelerates atherosclerotic plaque formation in vivo. Atherosclerosis 2011;219:402–408.

    CAS  PubMed  Google Scholar 

  131. Xu XY, Meng X, Li S, et al. Bioactivity, health benefits, and related molecular mechanisms of curcumin: current progress, challenges, and perspectives. Nutrients 2018;10:1553.

    PubMed Central  Google Scholar 

  132. Yang AK, He SM, Liu L, et al. Herbal Interactions with anticancer drugs: mechanistic and clinical considerations. Curr Med Chem 2010;17:1635–1678.

    CAS  PubMed  Google Scholar 

  133. Zhang Y, Wang J. MicroRNAs are important regulators of drug resistance in colorectal cancer. Biol Chem 2017;398:929–938.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Wu QB, Sheng X, Zhang N, et al. Role of microRNAs in the resistance of colorectal cancer to chemoradiotherapy. Mol Clin Oncol 2018;8:528.

    Google Scholar 

  135. Tintelnot J, Stein A. Immunotherapy in colorectal cancer: available clinical evidence, challenges and novel approaches. World J Gastroenterol 2019;25:3920–3928.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Tauriello DVF, Palomo-Ponce S, Stork D, et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 2018;554:538–543.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-Hun Lee.

Additional information

Supported by the Daejeon University Research Grants (2017)

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, GY., Lee, JS., Son, CG. et al. Combating Drug Resistance in Colorectal Cancer Using Herbal Medicines. Chin. J. Integr. Med. 27, 551–560 (2021). https://doi.org/10.1007/s11655-020-3425-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-020-3425-8

Keywords

Navigation