Skip to main content

Advertisement

Log in

Hotspot Analysis of Traditional Drugs in Diabetes Treatment Literature

  • Literature Research
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To summarize current hotspots and predict the potential trends in traditional drugs of diabetes treatment for further research.

Methods

Publications on the application of traditional drugs in diabetes treatment were searched from PubMed without language limits. Highly frequent MeSH terms were identified through Bibliographic Item Co-Occurrence Matrix Builder (BICOMB). Biclustering analysis results were visualized utilizing the gCLUTO software. Finally, a strategic diagram was generated.

Results

Totally 2,386 relevant publications were obtained from PubMed on November 9th, 2018, and 69 highly frequent MeSH terms were identified. Biclustering analysis revealed that these highly frequent MeSH terms were classified into 7 clusters. After calculating the density and centrality of each cluster, strategy diagram was presented. Cluster 0 “Chinese medicine monomers such as antioxidant and hypoglycemic effects” was considered as the most potential research hotspot.

Conclusions

In this study, we found 7 topics related to the application of traditional drugs in diabetes treatment. The molecular mechanisms of Chinese medicine monomers in diabetes could become a potential hotspot with high centricity and low density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kitabchi AE, Umpierrez GE, Miles JM, et al. Hyperglycemic crises in adult patients with diabetes. Diabetes Care 2009;32:1335–1343.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bhupathiraju SN, Hu FB. Epidemiology of obesity and diabetes and their cardiovascular complications. Circ Res 2016;118:1723–1735.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen R, Ovbiagele B, Feng W. Diabetes and stroke: epidemiology, pathophysiology, pharmaceuticals and outcomes. Am J Med Sci 2016;351:380–386.

    PubMed  PubMed Central  Google Scholar 

  4. Thomas MC, Cooper ME, Zimmet P. Changing epidemiology of type 2 diabetes mellitus and associated chronic kidney disease. Nat Rev Nephrol 2016;12:73–81.

    CAS  PubMed  Google Scholar 

  5. Khan A, Petropoulos IN, Ponirakis G, et al. Visual complications in diabetes mellitus: beyond retinopathy. Diabet Med 2017;34:478–484.

    CAS  PubMed  Google Scholar 

  6. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 2006;3:e442.

    PubMed  PubMed Central  Google Scholar 

  7. Yang D, Liang XC. Strategies and research progress of Chinese medicine in prevention and treatment of diabetic peripheral neuropathy. Chin J Integr Med 2018;24:794–800.

    PubMed  Google Scholar 

  8. Li WL, Zheng HC, Bukuru J, et al. Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J Ethnopharmacol 2004;92:1–21.

    CAS  PubMed  Google Scholar 

  9. Tzeng TF, Liou SS, Liu IM. The selected traditional Chinese medicinal formulas for treating diabetic nephropathy: perspective of modern science. J Tradit Complement Med 2013;3:152–158.

    PubMed  PubMed Central  Google Scholar 

  10. Rizvi SI, Matteucci E, Atukeren P. Traditional medicine in management of type 2 diabetes mellitus. J Diabetes Res 2013;2013:580823.

    PubMed  PubMed Central  Google Scholar 

  11. Liu SH, Chuang WC, Lam W, et al. Safety surveillance of traditional Chinese medicine: current and future. Drug Saf 2015;38:117–128.

    PubMed  PubMed Central  Google Scholar 

  12. Gong J, Fang K, Dong H, et al. Effect of fenugreek on hyperglycaemia and hyperlipidemia in diabetes and prediabetes: a meta-analysis. J Ethnopharmacol 2016;194:260–268.

    PubMed  Google Scholar 

  13. Martínez AL, Madariaga-Mazón A, Rivero-Cruz I, et al. Antidiabetic and antihyperalgesic effects of a decoction and compounds from Acourtia thurberi. Planta Med 2017;83:534–544.

    PubMed  Google Scholar 

  14. Shi M, Liu ZL, Zhu YB, et al. Effect of health education based on integrative therapy of Chinese and Western medicine for adult patients with type 2 diabetes mellitus: a randomized controlled study. Chin J Integr Med 2018;24:94–102.

    PubMed  Google Scholar 

  15. Lian F, Tian J, Chen X, et al. The efficacy and safety of Chinese herbal medicine Jinlida as add-on medication in type 2 diabetes patients ineffectively managed by metformin monotherapy: a double-blind, randomized, placebo-controlled, multicenter trial. PLoS One 2015;10:e0130550.

    PubMed  PubMed Central  Google Scholar 

  16. Guo J. Research progress on prevention and treatment of glucolipid metabolic disease with integrated traditional Chinese and Western medicine. Chin J Integr Med 2017;23:403–409.

    CAS  PubMed  Google Scholar 

  17. Choi CI. Sodium-glucose cotransporter 2 (SGLT2) inhibitors from natural products: discovery of next-generation antihyperglycemic agents. Molecules 2016;21:1136.

    PubMed Central  Google Scholar 

  18. Hardie DG, Ross FA, Hawley SA. AMP-activated protein kinase: a target for drugs both ancient and modern. Chem Biol 2012;19:1222–1236.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yue SJ, Liu J, Feng WW, et al. System pharmacology-based dissection of the synergistic mechanism of Huangqi and Huanglian for diabetes mellitus. Front Pharmacol 2017;8:694.

    PubMed  PubMed Central  Google Scholar 

  20. Geaney F, Scutaru C, Kelly C, et al. Type 2 diabetes research yield, 1951–2012: bibliometrics analysis and density-equalizing mapping. PLoS One 2015;10:e0133009.

    PubMed  PubMed Central  Google Scholar 

  21. Shuaib W, Costa JL. Anatomy of success: 100 most cited articles in diabetes research. Ther Adv Endocrinol Metab 2015;6:163–173.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Su HN, Lee PC. Mapping knowledge structure by keyword co-occurrence: a first look at journal papers in Technology Foresight. Scientometrics 2010;85:65–79.

    Google Scholar 

  23. Law J, Bauin S, Courtial JP, et al. Policy and the mapping of scientific change: a co-word analysis of research into environmental acidification. Scientometrics 1988;14:251–264.

    Google Scholar 

  24. Hartigan JA. Direct clustering of a data matrix. J Am Stat Assoc 1972;67:123–129.

    Google Scholar 

  25. Cheng Y, Church GM. Biclustering of expression data. Eighth International Conference on Intelligent Systems for Molecular Biology AAAI Press 2000;93–103.

  26. Lu K, Yu S, Sun D, et al. Scientometric analysis of SIRT6 studies. Med Sci Monit 2018;24:8357–8371.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Karypis Lab. gCLUTO-graphical clustering toolkit. Available at http://glaros.dtc.umn.edu/gkhome/views/cluto

  28. Xu LN, Wei YL, Peng JY. Advances in study of dioscin—a natural product. China J Chin Mater Med (Chin) 2015;40:36–41.

    CAS  Google Scholar 

  29. Tao X, Yin L, Xu L, et al. Dioscin: a diverse acting natural compound with therapeutic potential in metabolic diseases, cancer, inflammation and infections. Pharmacol Res 2018;137:259–269.

    CAS  PubMed  Google Scholar 

  30. Zhang W, Yin L, Tao X, et al. Dioscin alleviates dimethylnitrosamine-induced acute liver injury through regulating apoptosis, oxidative stress and inflammation. Environ Toxicol Pharmacol 2016;45:193–201.

    CAS  PubMed  Google Scholar 

  31. Zhao L, Tao X, Qi Y, et al. Protective effect of dioscin against doxorubicin-induced cardiotoxicity via adjusting microRNA-140-5p-mediated myocardial oxidative stress. Redox Biol 2018;16:189–198.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Qiao Y, Xu L, Tao X, et al. Protective effects of dioscin against fructose-induced renal damage via adjusting Sirt3-mediated oxidative stress, fibrosis, lipid metabolism and inflammation. Toxicol Lett 2018;284:37–45.

    CAS  PubMed  Google Scholar 

  33. Pandey AK, Gupta PP, Lal VK. Preclinical evaluation of hypoglycemic activity of Ipomoea digitata tuber in streptozotocin-induced diabetic rats. J Basic Clin Physiol Pharmacol 2013;24:35–39.

    CAS  PubMed  Google Scholar 

  34. Manzari-Tavakoli A, Pouraboli I, Yaghoobi MM, et al. Antihyperglycemic, antilipid peroxidation, and insulin secretory activities of Otostegia persica shoot extract in streptozotocin-induced diabetic rats and in vitro C187 pancreatic β-cells. Pharm Biol 2013;51:253–259.

    CAS  PubMed  Google Scholar 

  35. Subash Babu P, Prabuseenivasan S, Ignacimuthu S. Cinnamaldehyde—a potential antidiabetic agent. Phytomedicine 2007;14:15–22.

    CAS  PubMed  Google Scholar 

  36. Mahomed IM, Ojewole JA. Analgesic, antiinflammatory and antidiabetic properties of Harpagophytum procumbens DC (Pedaliaceae) secondary root aqueous extract. Phytother Res 2004;18:982–989.

    PubMed  Google Scholar 

  37. Ugochukwu NH, Babady NE. Antioxidant effects of Gongronema latifolium in hepatocytes of rat models of non-insulin dependent diabetes mellitus. Fitoterapia 2002;73:612–618.

    CAS  PubMed  Google Scholar 

  38. Roy VK, Chenkual L, Gurusubramanian G. Protection of testis through antioxidant action of Mallotus roxburghianus in alloxan-induced diabetic rat model. J Ethnopharmacol 2015;176:268–280.

    CAS  PubMed  Google Scholar 

  39. Mao ZM, Shen SM, Wan YG, et al. Huangkui Capsule attenuates renal fibrosis in diabetic nephropathy rats through regulating oxidative stress and p38MAPK/Akt pathways, compared to α-lipoic acid. J Ethnopharmacol 2015;173:256–265.

    PubMed  Google Scholar 

  40. Arya A, Al-Obaidi MM, Karim RB, et al. Extract of Woodfordia fruticosa flowers ameliorates hyperglycemia, oxidative stress and improves β-cell function in streptozotocin-nicotinamide induced diabetic rats. J Ethnopharmacol 2015;175:229–240.

    CAS  PubMed  Google Scholar 

  41. Arunachalam K, Parimelazhagan T. Antidiabetic activity of Ficus amplissima Smith. bark extract in streptozotocin induced diabetic rats. J Ethnopharmacol 2013;147:302–310.

    PubMed  Google Scholar 

  42. Dimo T, Ngueguim FT, Kamtchouing P, et al. Glucose lowering efficacy of the aqueous stem bark extract of Trema orientalis (Linn) Blume in normal and streptozotocin diabetic rats. Pharmazie 2006;61:233–236.

    CAS  PubMed  Google Scholar 

  43. Pareek H, Sharma S, Khajja BS, et al. Evaluation of hypoglycemic and anti-hyperglycemic potential of Tridax procumbens (Linn.). BMC Complement Altern Med 2009;9:48.

    PubMed  PubMed Central  Google Scholar 

  44. Sunil C, Ignacimuthu S, Agastian P. Antidiabetic effect of Symplocos cochinchinensis (Lour.) S. Moore. in type 2 diabetic rats. J Ethnopharmacol 2011;134:298–304.

    PubMed  Google Scholar 

  45. Jaiswal D, Kumar RP, Kumar A, et al. Effect of Moringa oleifera Lam. leaves aqueous extract therapy on hyperglycemic rats. J Ethnopharmacol 2009;123:392–396.

    PubMed  Google Scholar 

  46. Zhang YW, Xie D, Xia B, et al. Suppression of transforming growth factor-beta1 gene expression by Danggui Buxue Tang, a traditional Chinese herbal preparation, in retarding the progress of renal damage in streptozotocin-induced diabetic rats. Horm Metab Res 2006;38:82–88.

    CAS  PubMed  Google Scholar 

  47. Ma L, Huang L, Pei H, et al. Pharmacological effects of the water fraction of key components in the traditional Chinese prescription Mai Tong Fang on 3T3-L1 adipocytes and ob/ob diabetic mice. Molecules 2014;19:14687–14698.

    PubMed  PubMed Central  Google Scholar 

  48. Niu HS, Liu IM, Niu CS, et al. Eucommia bark (Du-Zhong) improves diabetic nephropathy without altering blood glucose in type 1-like diabetic rats. Drug Des Devel Ther 2016;10:971–978.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ng YF, Tang PC, Sham TT, et al. Semen Astragali Complanati: an ethnopharmacological, phytochemical and pharmacological review. J Ethnopharmacol 2014;155:39–53.

    CAS  PubMed  Google Scholar 

  50. de Oliveira AP, Coppede JS, Bertoni BW, et al. Costus spiralis (Jacq.) Roscoe: a novel source of flavones with α-glycosidase inhibitory activity. Chem Biodivers 2018;15:e1700421.

    Google Scholar 

  51. McCune LM, Johns T. Antioxidant activity relates to plant part, life form and growing condition in some diabetes remedies. J Ethnopharmacol 2007;112:461–469.

    PubMed  Google Scholar 

  52. Anand K, Tiloke C, Naidoo P, et al. Phytonanotherapy for management of diabetes using green synthesis nanoparticles. J Photochem Photobiol B 2017;173:626–639.

    CAS  PubMed  Google Scholar 

  53. Orhan N, Aslan M, Süküroglu M, et al. In vivo and in vitro antidiabetic effect of Cistus laurifolius L. and detection of major phenolic compounds by UPLC-TOF-MS analysis. J Ethnopharmacol 2013;146:859–865.

    CAS  PubMed  Google Scholar 

  54. Zhu R, Zheng J, Chen L, et al. Astragaloside IV facilitates glucose transport in C2C12 myotubes through the IRS1/AKT pathway and suppresses the palmitate-induced activation of the IKK/IκBκ pathway. Int J Mol Med 2016;37:1697–1705.

    CAS  PubMed  Google Scholar 

  55. Leem KH, Kim MG, Hahm YT, et al. Hypoglycemic effect of Opuntia ficus-indica var. saboten is due to enhanced peripheral glucose uptake through activation of AMPK/p38 MAPK pathway. Nutrients 2016;8:800.

    PubMed Central  Google Scholar 

  56. Fang P, Yu M, Zhang L, et al. Baicalin against obesity and insulin resistance through activation of AKT/AS160/GLUT4 pathway. Mol Cell Endocrinol 2017;48:77–86.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Zhou HC conceived and designed the study. Shen H and Zhu WK conducted most of the experiments and data analysis, and wrote the manuscript. Lu Z participated in collecting data and helped to draft the manuscript. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Hai-cheng Zhou.

Additional information

Conflict of Interest

The authors declare no conflicts of interest.

Supported by the Scientific Research Project for Institutes of Higher Education, Ministry of Education, Liaoning Province (No. L2015160)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, H., Zhu, Wk., Lu, Z. et al. Hotspot Analysis of Traditional Drugs in Diabetes Treatment Literature. Chin. J. Integr. Med. 27, 304–312 (2021). https://doi.org/10.1007/s11655-020-3322-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-020-3322-1

Keywords

Navigation