Skip to main content
Log in

Realgar (α-As4S4) Treats Myelodysplastic Syndromes through Reducing DNA Hypermethylation

  • Review
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

DNA hypermethylation is an epigenetic modification that plays a critical role in the oncogenesis of myelodysplastic syndromes (MDS). Aberrant DNA methylation represses the transcription of promotors of tumor suppressor genes, inducing gene silencing. Realgar (α-As4S4) is a traditional medicine used for the treatment of various diseases in the ancient time. Realgar was reported to have efficacy for acute promyelocytic leukemia (APL). It has been demonstrated that realgar could efficiently reduce DNA hypermethylation of MDS. This review discusses the mechanisms of realgar on inhibiting DNA hypermethylation of MDS, as well as the species and metabolisms of arsenic in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang TD, Li YS. Clinical analysis and empirical study on treatment of Ailing No. 1 in 62 cases of acute promyelocytic leukemia. J Integr Tradit West Med (Chin) 1984;1:19.

    CAS  Google Scholar 

  2. Chen GQ, Zhu J, Shi XG, et al. In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RAR alpha/PML proteins. Blood 1996;88:1052–1061.

    Article  CAS  PubMed  Google Scholar 

  3. Barbey JT. Cardiac toxicity of arsenic trioxide. Blood 2001;98:1632–1634.

    Article  CAS  PubMed  Google Scholar 

  4. Hofmann WK, Koeffler HP. Myelodysplastic syndrome. Annu Rev Med 2005;56:1–16.

    Article  CAS  PubMed  Google Scholar 

  5. Acquaviva C, Gelsi-Boyer V, Birnbaum D. Myelodysplastic syndromes: lost between two states? Leukemia 2010;24:1–5.

    Article  CAS  PubMed  Google Scholar 

  6. List A, Beran M, DiPersio J, et al. Opportunities for Trisenox® (arsenic trioxide) in the treatment of myelodysplastic syndromes. Leukemia 2003;17:1499–1507.

    Article  CAS  PubMed  Google Scholar 

  7. Tuzuner N, Cox C, Rowe JM, et al. Hypocellular myelodysplastic syndromes (MDS): new proposals. Br J Haematol 1995;91:612–617.

    Article  CAS  PubMed  Google Scholar 

  8. Ma R. Treatment of bone marrow failure syndrome with integrated traditional and Western medicine. Chin J Integr Med 2007;13:85–88.

    Article  PubMed  Google Scholar 

  9. Riggs AD. X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet 1975;14:9–25.

    Article  CAS  PubMed  Google Scholar 

  10. Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science 1975;187:226–232.

    Article  CAS  PubMed  Google Scholar 

  11. Shen L, Kantarjian H, Guo Y, et al. DNA methylation predicts survival and response to therapy in patients with myelodysplastic syndromes. J Clin Oncol 2010;28:605–613.

    Article  CAS  PubMed  Google Scholar 

  12. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002;3:415–428.

    Article  CAS  PubMed  Google Scholar 

  13. Pharmacopoeia of the People’s Republic of China. Realgar. Chinese Pharmacopoeia Commission; 2015.

  14. Ballirano P, Maras A. In-situ X-ray transmission powder diffraction study of the kinetics of the light induced alteration of realgar (α-As4S4). Eur J Mineral 2006;18:589–599.

    Article  CAS  Google Scholar 

  15. Trentelman K, Stodulski L, Pavlosky M. Characterization of pararealgar and other light-induced transformation products from realgar by Raman microspectroscopy. Anal Chem 1996;68:1755–1761.

    Article  CAS  PubMed  Google Scholar 

  16. Kyono A, Kimata M, Hatta T. Light-induced degradation dynamics in realgar: in situ structural investigation using single-crystal X-ray diffraction study and X-ray photoelectron spectroscopy. Am Mineral 2005;90:1563–1570.

    Article  CAS  Google Scholar 

  17. Wu J, Shao Y, Liu J, et al. The medicinal use of realgar (As4S4) and its recent development as an anticancer agent. J Ethnopharmacol 2011;135:595–602.

    Article  CAS  PubMed  Google Scholar 

  18. Lu DP, Qiu JY, Jiang B, et al. Tetra-arsenic tetra-sulfide for the treatment of acute promyelocytic leukemia: a pilot report. Blood 2002;99:3136–3143.

    Article  CAS  PubMed  Google Scholar 

  19. Przygoda G, Feldmann J, Cullen WR. The arsenic eaters of Styria: a different picture of people who were chronically exposed to arsenic. Appl Organomet Chem 2001;15:457–462.

    Article  CAS  Google Scholar 

  20. Liu J, Lu Y, Wu Q, Goyer RA, et al. Mineral arsenicals in traditional medicines: orpiment, realgar, and arsenolite. J Pharmacol Exp Ther 2008;326:363–368.

    Article  CAS  PubMed  Google Scholar 

  21. Baláž P, Fabián M, Pastorek M, et al. Mechanochemical preparation and anticancer effect of realgar As4S4 nanoparticles. Mater Lett 2009;63:1542–1544.

    Article  CAS  Google Scholar 

  22. Ma PY, Fu ZY, Su YL, et al. The nano pulverization of traditional Chinese medicine Liuwei Dihuang. J Wuhan Univ Technol (Chin) 2006;21:105–108.

    Google Scholar 

  23. Rowland IR, Davies MJ. In vitro metabolism of inorganic arsenic by the gastrointestinal microflora of the rat. J Appl Toxicol 1981;1:278–283.

    Article  CAS  PubMed  Google Scholar 

  24. Gong Z, Lu X, Ma M, et al. Arsenic speciation analysis. Talanta 2002;58:77–96.

    Article  CAS  PubMed  Google Scholar 

  25. Gregus Z, Németi B. Purine nucleoside phosphorylase as a cytosolic arsenate reductase. Toxicol Sci 2002;70:13–19.

    Article  CAS  PubMed  Google Scholar 

  26. Yin ZL, Dahlstrom JE, Le Couteur DG, et al. Immunohistochemistry of omega class glutathione S-transferase in human tissues. J Histochem Cytochem 2001;49:983–987.

    Article  CAS  PubMed  Google Scholar 

  27. Wang QQ, Thomas DJ, Naranmandura H. Importance of being thiomethylated: formation, fate, and effects of methylated thioarsenicals. Chem Res Toxicol 2015;28:281–289.

    Article  CAS  PubMed  Google Scholar 

  28. Challenger F. Biological methylation. Chem Rev 1945;36:315–361.

    Article  CAS  Google Scholar 

  29. Goering PL, Aposhian HV, Mass MJ, et al. The enigma of arsenic carcinogenesis: role of metabolism. Toxicol Sci 1999;49:5–14.

    Article  CAS  PubMed  Google Scholar 

  30. Suzuki KT, Mandal BK, Ogra Y. Speciation of arsenic in body fluids. Talanta 2002;58:111–119.

    Article  CAS  PubMed  Google Scholar 

  31. Mandal BK, Ogra Y, Suzuki KT. Identification of dimethylarsinous and monomethylarsonous acids in human urine of the arsenic-affected areas in West Bengal, India. Chem Res Toxicol 2001;14:371–378.

    Article  CAS  PubMed  Google Scholar 

  32. Aposhian HV, Gurzau ES, Le XC, et al. Occurrence of monomethylarsonous acid in urine of humans exposed to inorganic arsenic. Chem Res Toxicol 2000;13:693–697.

    Article  CAS  PubMed  Google Scholar 

  33. Styblo M, Del Razo LM, Vega L, et al. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol 2000;74:289–299.

    Article  CAS  PubMed  Google Scholar 

  34. Hayakawa T, Kobayashi Y, Cui X, et al. A new metabolic pathway of arsenite: arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Arch Toxicol 2005;79:183–191.

    Article  CAS  PubMed  Google Scholar 

  35. Lu M, Wang H, Li XF, et al. Evidence of hemoglobin binding to arsenic as a basis for the accumulation of arsenic in rat blood. Chem Res Toxicol 2004;17:1733–1742.

    Article  CAS  PubMed  Google Scholar 

  36. Suzuki KT, Katagiri A, Sakuma Y, et al. Distributions and chemical forms of arsenic after intravenous administration of dimethylarsinic and monomethylarsonic acids to rats. Toxicol Appl Pharmacol 2004;198:336–344.

    Article  CAS  PubMed  Google Scholar 

  37. Rehman K, Naranmandura H. Arsenic metabolism and thioarsenicals. Metallomics 2012;4:881–892.

    Article  CAS  PubMed  Google Scholar 

  38. Hughes MF, Kenyon EM, Edwards BC, et al. Accumulation and metabolism of arsenic in mice after repeated oral administration of arsenate. Toxicol Appl Pharmacol 2003;191:202–210.

    Article  CAS  PubMed  Google Scholar 

  39. Wen L, Lou YQ, Jiang B, et al. Pharmacokinetics of tetra-arsenic tetra-sulfide in mice. Chin Pharm J (Chin) 2006;41:619–623.

    CAS  Google Scholar 

  40. Zhang YN, Sun GX, Williams PN, et al. Assessment of the solubility and bio-accessibility of arsenic in realgar wine using a simulated gastrointestinal system. Sci Total Environ 2011;409:2357–2360.

    Article  CAS  PubMed  Google Scholar 

  41. Gao XX, Wang XQ, Ma JJ. Treatment of arsenic disulfide in 14 cases with myelodysplastic syndrome. J Clin Intern Med (Chin) 1998;3:125.

    Google Scholar 

  42. Xu S, Ma R, Hu X, et al. Clinical observation of the treatment of myelodysplastic syndrome mainly with Qinghuang Powder. Chin J Integr Med 2011;17:834–839.

    Article  PubMed  Google Scholar 

  43. Hu X, Liu F, Ma R. Application and assessment of Chinese arsenic drugs in treating malignant hematopathy in China. Chin J Integr Med 2010;16:368–377.

    Article  CAS  PubMed  Google Scholar 

  44. Hu XM, Tanaka S, Onda K, et al. Arsenic disulfide induced apoptosis and concurrently promoted erythroid differentiation in cytokine-dependent myelodysplastic syndrome-progressed leukemia cell line F-36p with complex karyotype including monosomy 7. Chin J Integr Med 2014;20:387–393.

    Article  CAS  PubMed  Google Scholar 

  45. Hu XM, Yuan B, Tanaka S, et al. Arsenic disulfide-triggered apoptosis and erythroid differentiation in myelodysplastic syndrome and acute myeloid leukemia cell lines. Hematology 2014;19:352–360.

    Article  CAS  PubMed  Google Scholar 

  46. Xu M, Ren JY, Guo YC, et al. Effects of arsenic disulfide on apoptosis, histone acetylation, toll like receptor 2 activation, and erythropoiesis in bone marrow mononuclear cells of myelodysplastic syndromes patients in vitro. Leuk Res 2017;62:4–11.

    Article  CAS  PubMed  Google Scholar 

  47. Sun SZ, Ma R, Hu XM, et al. Karyotype and DNA-methylation responses in myelodysplastic syndromes following treatment with traditional Chinese formula containing arsenic. Evid Based Complementary Alterna Med 2012;2012:969476.

    Google Scholar 

  48. Zhao P, Liang JB, Deng ZY, et al. Association of gene mutations with response to arsenic-containing compound Qinghuang Powder, in patients with myelodysplastic syndromes. Chin J Integr Med 2019;25:409–415.

    Article  CAS  PubMed  Google Scholar 

  49. Ramsahoye BH, Biniszkiewicz D, Lyko F, et al. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci USA 2000;97:5237–5242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jones PA, Taberlay PC. DNA methylation and cancer. Prog Drug Res 2011;67:1–23.

    PubMed  Google Scholar 

  51. Lu SC. S-adenosylmethionine. Int J Biochem Cell Biol 2000;32:391–395.

    Article  CAS  PubMed  Google Scholar 

  52. Lieber CS, Packer L. S-adenosylmethionine: molecular, biological, and clinical aspects—an introduction. Am J Clin Nutr 2002;76:1148S–1150S.

    Article  CAS  PubMed  Google Scholar 

  53. Song Z, Zhou Z, Uriarte S, et al. S-adenosylhomocysteine sensitizes to TNF-α hepatotoxicity in mice and liver cells: a possible etiological factor in alcoholic liver disease. Hepatology 2004;40:989–997.

    Article  PubMed  CAS  Google Scholar 

  54. Bestor TH. The DNA methyltransferases of mammals. Hum Mol genet 2000;9:2395–2402.

    Article  CAS  PubMed  Google Scholar 

  55. Robertson KD. DNA methylation and chromatin-unraveling the tangled web. Oncogene 2002;21:5361–5379.

    Article  CAS  PubMed  Google Scholar 

  56. Jin B, Li Y, Robertson KD. DNA methylation: superior or subordinate in the epigenetic hierarchy?. Genes Cancer 2011;2:607–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet 2013;14:204–220.

    Article  CAS  PubMed  Google Scholar 

  58. Jones PA, Liang G. Rethinking how DNA methylation patterns are maintained. Nat Rev Genet 2009;10:805–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bronner C, Alhosin M, Hamiche A, et al. Coordinated dialogue between UHRF1 and DNMT1 to ensure faithful inheritance of methylated DNA patterns. Genes 2019;10:65.

    Article  PubMed Central  CAS  Google Scholar 

  60. Zhang H, Ying H, Wang X. Methyltransferase DNMT3B in leukemia. Leuk Lymph 2020;61:263–273.

    Article  CAS  Google Scholar 

  61. Rhee I, Jair KW, Yen RW, et al. CpG methylation is maintained in human cancer cells lacking DNMT1. Nature 2000;404:1003–1007.

    Article  CAS  PubMed  Google Scholar 

  62. Liang G, Chan MF, Tomigahara Y, et al. Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol 2002;22:480–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Boxer LD, Renthal W, Greben AW, et al. MeCP2 represses the rate of transcriptional initiation of highly methylated long genes. Mol Cell 2020;77:294–309.

    Article  CAS  PubMed  Google Scholar 

  64. Picard N, Fagiolini M. MeCP2: an epigenetic regulator of critical periods. Curr Opin Neurobiol 2019;59:95–101.

    Article  CAS  PubMed  Google Scholar 

  65. Sasidharan NV, Saleh R, Toor SM, et al. Role of DNA methylation in tumor suppressor gene silencing in colorectal cancer. Clin Epigenetics 2020;12:13.

    Article  CAS  Google Scholar 

  66. Kulis M, Esteller M. DNA methylation and cancer. Adv Genet 2010;70:27–56.

    Article  PubMed  Google Scholar 

  67. Lopez-Serra P, Esteller M. DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer. Oncogene 2012;31:1609–1622.

    Article  CAS  PubMed  Google Scholar 

  68. Daskalakis M, Nguyen TT, Nguyen C, et al. Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-2′-deoxycytidine (decitabine) treatment. Blood 2002;100:2957–2964.

    Article  CAS  PubMed  Google Scholar 

  69. Lübbert M. Gene silencing of the p15/INK4B cell-cycle inhibitor by hypermethylation: an early or later epigenetic alteration in myelodysplastic syndromes? Leukemia 2003;17:1762–1764.

    Article  PubMed  CAS  Google Scholar 

  70. Paul TA, Bies J, Small D, et al. Signatures of polycomb repression and reduced H3K4 trimethylation are associated with p15INK4b DNA methylation in AML. Blood 2010;115:3098–3108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Baba SM, Azad NA, Shah ZA, et al. p15Ink4b loss of expression by promoter hypermethylation adds to leukemogenesis and confers a poor prognosis in acute promyelocytic leukemia patients. Cancer Res Treat 2017;49:790–797.

    Article  CAS  PubMed  Google Scholar 

  72. Aoki E, Uchida T, Ohashi H, et al. Methylation status of the p15INK4B gene in hematopoietic progenitors and peripheral blood cells in myelodysplastic syndromes. Leukemia 2000;14:586–593.

    Article  CAS  PubMed  Google Scholar 

  73. Tien HF, Tang JL, Tsay W, et al. Methylation of the p15INK4B gene in myelodysplastic syndrome: it can be detected early at diagnosis or during disease progression and is highly associated with leukaemic transformation. Br J Haematol 2001;112:148–154.

    Article  CAS  PubMed  Google Scholar 

  74. Ismail EA, EI-Mogy MI, Mohamed DS, et al. Methylation pattern of calcitonin (CALCA) gene in pediatric acute leukemia. J Pediatr Hematol Oncol 2011;33:534–542.

    Article  CAS  PubMed  Google Scholar 

  75. Marinitch DV, Vorobyev IA, Holmes JA, et al. Hypermethylation of 5′-region of the human calcitonin gene in leukemias: structural features and diagnostic significance. Biochemistry 2004;69:340–349.

    CAS  PubMed  Google Scholar 

  76. Roman J, Castillejo JA, Jimenez A, et al. Hypermethylation of the calcitonin gene in acute lymphoblastic leukaemia is associated with unfavourable clinical outcome. Br J Haematol 2001;113:329–338.

    Article  CAS  PubMed  Google Scholar 

  77. Olk-Batz C, Poetsch AR, Nöllke P, et al. Aberrant DNA methylation characterizes juvenile myelomonocytic leukemia with poor outcome. Blood 2011;117:4871–4880.

    Article  CAS  PubMed  Google Scholar 

  78. Aggerholm A, Holm MS, Guldberg P, et al. Promoter hypermethylation of p15INK4B, HIC1, CDH1, and ER is frequent in myelodysplastic syndrome and predicts poor prognosis in early-stage patients. Eur J Haematol 2006;76:23–32.

    Article  CAS  PubMed  Google Scholar 

  79. Britschgi C, Jenal M, Rizzi M, et al. HIC1 tumour suppressor gene is suppressed in acute myeloid leukaemia and induced during granulocytic differentiation. Br J Haematol 2008;141:179–187.

    Article  CAS  PubMed  Google Scholar 

  80. Roman-Gomez J, Castillejo J A, Jimenez A, et al. 5′ CpG island hypermethylation is associated with transcriptional silencing of the p21CIP1/WAF1/SDI1 gene and confers poor prognosis in acute lymphoblastic leukemia. Blood 2002;99:2291–2296.

    Article  CAS  PubMed  Google Scholar 

  81. Aggerholm A, Holm MS, Guldberg P, et al. Promoter hypermethylation of p15INK4B, HIC1, CDH1, and ER is frequent in myelodysplastic syndrome and predicts poor prognosis in early-stage patients. Eur J Haematol 2006;76:23–32.

    Article  CAS  PubMed  Google Scholar 

  82. Wu SJ, Yao M, Chou WC, et al. Clinical implications of SOCS1, methylation in myelodysplastic syndrome. Br J Haematol 2006;135:317–323.

    Article  CAS  PubMed  Google Scholar 

  83. Mass MJ, Wang L. Arsenic alters cytosine methylation patterns of the promoter of the tumor suppressor gene p53 in human lung cells: a model for a mechanism of carcinogenesis. Mutat Res 1997;386:263–277.

    Article  CAS  PubMed  Google Scholar 

  84. Shao X, Lu R, Guan X, et al. Effects of arsenic trioxide on Id4 methylation status in bone marrow mononuclear cells and its clinical efficacy for myelodysplastic syndrome. Chin J Hematol (Chin) 2014;35:247–250.

    CAS  Google Scholar 

  85. Ye XS, Liu T, Cui X, et al. Methylation of P15INK4B gene in patients with myelodysplastic syndromes and demethylating effects of drugs. J Sichuan Univer (MSE, Chin) 2007;38:57–59.

    CAS  Google Scholar 

  86. Caudill MA, Wang JC, Melnyk S, et al. Intracellular S-adenosylhomocysteine concentrations predict global DNA hypomethylation in tissues of methyl-deficient cystathionine β-synthase heterozygous mice. J Nutr 2001;131:2811–2818.

    Article  CAS  PubMed  Google Scholar 

  87. Saxena R, Bozack AK, Gamble MV. Nutritional influences on one-carbon metabolism: effects on arsenic methylation and toxicity. Annu Rev Nutr 2018;38:401–429.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Länger F, Dingemann J, Kreipe H, et al. Up-regulation of DNA methyltransferases DNMT1, 3A, and 3B in myelodysplastic syndrome. Leuk Res 2005;29:325–329.

    Article  PubMed  CAS  Google Scholar 

  89. Cui X, Wakai T, Shirai Y, et al. Arsenic trioxide inhibits DNA methyltransferase and restores methylation-silenced genes in human liver cancer cells. Hum Pathol 2006;37:298–311.

    Article  CAS  PubMed  Google Scholar 

  90. Reichard JF, Schnekenburger M, Puga A. Long term low-dose arsenic exposure induces loss of DNA methylation. Biochem Biophys Res Commun 2007;352:188–192.

    Article  CAS  PubMed  Google Scholar 

  91. Park WH, Cho YH, Jung CW, et al. Arsenic trioxide inhibits the growth of A498 renal cell carcinoma cells via cell cycle arrest or apoptosis. Biochem Bioph Res Co 2003;300:230–235.

    Article  CAS  Google Scholar 

  92. Detich N, Hamm S, Just G, et al. The methyl donor S-adenosylmethionine inhibits active demethylation of DNA a candidate novel mechanism for the pharmacological effects of S-adenosylmethionine. J Biol Chem 2003;278:20812–20820.

    Article  CAS  PubMed  Google Scholar 

  93. Finkelstein JD. Pathways and regulation of homocysteine metabolism in mammals. Semin Thromb Hemost 2000;26:219–225.

    Article  CAS  PubMed  Google Scholar 

  94. Lu SC, Tsukamoto H, Mato JM. Role of abnormal methionine metabolism in alcoholic liver injury. Alcohol 2002;27:155–162.

    Article  CAS  PubMed  Google Scholar 

  95. Vertino PM, Sekowski JA, Coll JM, et al. DNMT1 is a component of a multiprotein DNA replication complex. Cell Cycle 2002;1:416–423.

    Article  CAS  PubMed  Google Scholar 

  96. Chen T, Ueda Y, Dodge JE, et al. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol Cell Biol 2003;23:5594–5605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hermann A, Goyal R, Jeltsch A. The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemi-methylated target sites. J Biol Chem 2004;279:48350–48359.

    Article  CAS  PubMed  Google Scholar 

  98. Song J, Teplova M, Ishibe-Murakami S, Patel DJ. Structure-based mechanistic insights into DNMT1-mediated maintenance DNA methylation. Science 2012;335:709–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chen Z, Zhang Y. Role of mammalilan DNA methyltransferases in development. Annu Rev Biochem 2019; doi: https://doi.org/10.1146/annurev-biochem-103019-102815.

  100. Yamazaki T, Hatano Y, Taniguchi R, et al. Editing DNA methylation in mammalian embryos. Int J Mol Sci 2020;21:637.

    Article  CAS  PubMed Central  Google Scholar 

  101. Chen T, Ueda Y, Xie S, et al. A novel Dnmt3a isoform produced from an alternative promoter localizes to euchromatin and its expression correlates with active de novo methylation. J Biol Chem 2002;277:38746–38754.

    Article  CAS  PubMed  Google Scholar 

  102. Hata K, Okano M, Lei H, et al. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 2002;129:1983–1993.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Zhang M designed and wrote the manuscript. Zhang JY contributed to constructing the framework of the manuscript. Sun MQ performed to the data collection. Lu P helped to polish the language. Liu JX contributed to conceiving the ideas and innovations.

Corresponding author

Correspondence to Jian-xun Liu.

Ethics declarations

The authors declare that there is no conflict of interest regarding the publication of this paper.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Zhang, Jy., Sun, Mq. et al. Realgar (α-As4S4) Treats Myelodysplastic Syndromes through Reducing DNA Hypermethylation. Chin. J. Integr. Med. 28, 281–288 (2022). https://doi.org/10.1007/s11655-020-3263-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-020-3263-8

Keywords

Navigation