Skip to main content

Advertisement

Log in

Danshensu Ameliorates Cardiac Ischaemia Reperfusion Injury through Activating Sirt1/FoxO1/Rab7 Signal Pathway

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To explore the specific molecular mechanisms of Danshensu (DSS) in the treatment of ischemia reperfusion injury (IRI).

Methods

IRI model was established with isolated rat hearts by performing global ischaemia for 30 min, and then followed by 60 min reperfusion. Also, H9C2 cells were subjected to 4-h hypoxia followed by 3-h reoxygenation. Then 10 μmol/L DSS were added in the reperfusion/reoxygenation step to intervene IRI. Cardiac function, structural change and apoptosis were respectively tested by Langendorff System, hematoxylin and eosin (HE) and terminal-deoxynucleotidyl transferase mediated nick endabeling (TUNEL) stainings. Then lactate dehydrogenase (LDH), reactive oxygen species (ROS), superoxide gasification enzyme (SOD) and glutathione peroxidase (GSH-PX) were detected by enzyme-linked immunosorbent assay (ELISA). Sirt1/FoxO1/Rab7 Signal Pathway was monitored at both protein and mRNA levels.

Results

The results showed that IRI not only greatly attenuated cardiac function (LVDP and ±dp/dtmax, P<0.01, P<0.05) and increased the level of the marker enzymes (cardiac troponin T, LDH, P<0.01) from the coronary effluents, but also markedly induced changes in the structure of cardiomyocytes and contributed to apoptosis, which were mediated by boosted endogenous ROS. However, after treatment with DSS all above indexes were improved, which was related to activating Sirt1/FoxO1/Rab7 signal pathway accompanied with the enhancement of antioxidant defense system, such as superoxide gasification enzyme and glutathione peroxidase.

Conclusion

DSS is able to protect hearts from IRI, which may be attributable to inhibiting excessive ROS through Sirt1/FoxO1/Rab7 signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheng J, Wu Q, Lv R, Huang L, Xu B, Wang X, et al. Microrna-449a inhibition protects H9C2 cells against hypoxia/reoxygenation-induced injury by targeting the notch-1 signaling pathway. Cell Physiol Biochem 2018;46:2587–600.

    CAS  PubMed  Google Scholar 

  2. Khan A, Kapoor A, Chen J, Martin L, Rogazzo M, Mercier T, et al. The antimalarial drug artesunate attenuates cardiac injury in a rodent model of myocardial infarction Shock 2018;49: 675–681.

    CAS  Google Scholar 

  3. Ghiasi R, Mohammadi M, Majidinia M, Yousefi B, Ghiasi A, Badalzadeh R. The effects of mebudipine on myocardial arrhythmia induced by ischemia-reperfusion injury in isolated rat heart. Cell Mol Biol 2016;62:15–20.

    CAS  PubMed  Google Scholar 

  4. Nuntaphum W, Pongkan W, Wongjaikam S, Thummasorn S, Tanajak P, Khamseekaew J, et al. Vagus nerve stimulation exerts cardioprotection against myocardial ischemia/reperfusion injury predominantly through its efferent vagal fibers. Basic Res Cardiol 2018;113:22.

    PubMed  Google Scholar 

  5. Li J, Li RJ, Lv GY, Liu HQ. The mechanisms and strategies to protect from hepatic ischemia-reperfusion injury. Eur Rev Med Pharmacol Sci 2015;19:2036–2047.

    CAS  PubMed  Google Scholar 

  6. Kingma JG. Inhibition of Na+/H+ Exchanger with EMD 87580 does not confer greater cardioprotection beyond preconditioning on ischemia-reperfusion injury in normal dogs. Cardiovasc Pharmacol Ther 2018;23:254–69.

    CAS  Google Scholar 

  7. Huang Z, Ye B, Wang Z, Han J, Lin L, Shan P, et al. Inhibition of lncRNA-HRIM increases cell viability by regulating autophagy levels during hypoxia/reoxygenation in myocytes. Cell Physiol Biochem 2018;46:1341–1351.

    CAS  PubMed  Google Scholar 

  8. Hentia C, Rizzato A, Camporesi E, Yang Z. An overview of protective strategies against ischemia/reperfusion injury: The role of hyperbaric oxygen preconditioning. Brain Behav 2018;8:e00959.

    PubMed  PubMed Central  Google Scholar 

  9. Lin B, Xu J, Feng DG, Wang F, Wang JX, Zhao H. DUSP14 knockout accelerates cardiac ischemia reperfusion (IR) injury through activating NF-kappaB and MAPKs signaling pathways modulated by ROS generation. Biochem Biophys Res Commun 2018;501:24–32.

    CAS  PubMed  Google Scholar 

  10. Tanno S, Yamamoto K, Kurata Y, Adachi M, Inoue Y, Otani N, et al. Protective effects of topiroxostat on an ischemiareperfusion model of rat hearts. Circ J 2018;82:1101–1111.

    CAS  PubMed  Google Scholar 

  11. Ribeiro Junior RF, Dabkowski ER, Shekar KC, O Connell KA, Hecker PA, Murphy MP. MitoQ improves mitochondrial dysfunction in heart failure induced by pressure overload. Free Radic Biol Med 2018;117:18–29.

    PubMed  PubMed Central  Google Scholar 

  12. Wang H, Chen Y, Zhai N, Chen X, Gan F, Li H, et al. Ochratoxin A-induced apoptosis of IPEC-J2 cells through ROS-mediated mitochondrial permeability transition pore Opening Pathway. Agric Food Chem 2017;65:10630–10637.

    CAS  Google Scholar 

  13. Yamamoto T, Sadoshima J. Protection of the heart against ischemia/reperfusion by silent information regulator 1. Trends Cardiovasc Med 2011;21:27–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu H, Liu W, Liu T, Su N, Guo C, Feng X, et al. Synergistic neuroprotective effects of Danshensu and hydroxysafflor yellow A on cerebral ischemia-reperfusion injury in rats. Oncotarget 2017;8:115434–115443.

    PubMed  PubMed Central  Google Scholar 

  15. Li ZM, Xu SW, Liu PQ. Salvia miltiorrhiza Burge (Danshen): a golden herbal medicine in cardiovascular therapeutics. Acta Pharmacol Sin 2018;39:802–824.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yu J, Wang L, Akinyi M, Li Y, Duan Z, Zhu Y, et al. Danshensu protects isolated heart against ischemia reperfusion injury through activation of Akt/ERK1/2/Nrf2 signaling. Int J Clin Exp Med 2015;8:14793–14804.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Fan G, Yu J, Asare PF, Wang L, Zhang H, Zhang B, et al. Danshensu alleviates cardiac ischaemia/reperfusion injury by inhibiting autophagy and apoptosis via activation of mTOR signalling. Cell Mol Med 2016;20:1908–1919.

    CAS  Google Scholar 

  18. Dar MH, Adnan Y, Faheem M, Khan I, Noor L. Short term clinical outcomes of Everolimus-eluting stents in patients with stable angina pectoris. Pak J Med Sci 2018;34:235–239.

    PubMed  PubMed Central  Google Scholar 

  19. Rahmani R, Jiriaee L, Jiriaee Z, Shafiee A, Zand Parsa AF. The incidence of myocardial injury after loading doses of clopidogrel versus prasugrel in the candidates for percutaneous coronary intervention: a randomized controlled trial. Crit Pathw Cardiol 2018;17:69–72.

    PubMed  Google Scholar 

  20. Gao Q, Zhao J, Fan Z, Bao J, Sun D, Li H, et al. Cardioprotective effect of Danshensu against ischemic/reperfusion injury via c-subunit of ATP synthase inhibition. Evid Based Complement Alternat Med 2017;2017:7986184.

    PubMed  PubMed Central  Google Scholar 

  21. Zhang X, Luo J, Huang Y, Deng H, Hu H, Yu P, et al. A Novel Danshensu-tetramethylpyrazine conjugate DT-018 provides cardioprotection by preserving mitochondrial function through the MEF2D/PGC-1alpha pathway. Curr Pharm Des 2018;23:6062–6070.

    PubMed  Google Scholar 

  22. Lu H, Tian A, Wu J, Yang C, Xing R, Jia P, et al. Danshensu inhibits beta-adrenergic receptors-mediated cardiac fibrosis by ROS/p38 MAPK axis. Biol Pharm Bull 2014;37:961–967.

    CAS  PubMed  Google Scholar 

  23. Du L, Miao X, Jiang Y, Jia H, Tian Q, Shen J, et al. An effective strategy for the synthesis of biocompatible gold nanoparticles using Danshensu antioxidant: prevention of cytotoxicity via attenuation of free radical formation. Nanotoxicology 2013;7:294–300.

    CAS  PubMed  Google Scholar 

  24. Gao L, Zhao Y, He J, Yan Y, Xu L, Lin N, et al. The desumoylating enzyme sentrin-specific protease 3 contributes to myocardial ischemia reperfusion injury. J Genet Genomics 2018;45:125–135.

    PubMed  Google Scholar 

  25. Guo W, Liu X, Li J, Shen Y, Zhou Z, Wang M, et al. Prdx1 alleviates cardiomyocyte apoptosis through ROS-activated MAPK pathway during myocardial ischemia/reperfusion injury. Int J Biol Macromol 2018;112:608–615.

    CAS  PubMed  Google Scholar 

  26. Ravindran S, Boovarahan SR, Shanmugam K, Vedarathinam RC, Kurian GA. Sodium thiosulfate preconditioning ameliorates ischemia/reperfusion injury in rat hearts via reduction of oxidative stress and apoptosis. Cardiovasc Drugs Ther 2017;31:511–524.

    CAS  PubMed  Google Scholar 

  27. Ben-Mahdi MH, Dang PM, Gougerot-Pocidalo MA, O’Dowd Y. Xanthine oxidase-derived ros display a biphasic effect on endothelial cells adhesion and FAK phosphorylation. Oxid Med Cell Longev 2016;2016:9346242.

    PubMed  PubMed Central  Google Scholar 

  28. Seidlmayer LK, Juettner VV, Kettlewell S, Pavlov EV, Blatter LA, Dedkova EN. Distinct mPTP activation mechanisms in ischaemia-reperfusion: contributions of Ca2+, ROS, pH, and inorganic polyphosphate Cardiovasc Res 2015;106:237–248.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Andrienko T, Pasdois P, Rossbach A, Halestrap AP. Realtime fluorescence measurements of ROS and (Ca2+) in ischemic / reperfused rat hearts: detectable increases occur only after mitochondrial pore opening and are attenuated by ischemic preconditioning. PLoS One 2016;11:e0167300.

    PubMed  PubMed Central  Google Scholar 

  30. Chouchani ET, Pell VR, Gaude E, Aksentijevic D, Sundier SY, Robb EL, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 2014;515:431–435.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Becatti M, Barygina V, Mannucci A, Emmi G. Sirt1 protects against oxidative stress-induced apoptosis in fibroblasts from psoriatic patients: a new insight into the pathogenetic mechanisms of psoriasis. Int J Mol Sci 2018;19:e1572.

    PubMed  Google Scholar 

  32. Cao MM, Lu X, Liu GD, Su Y, Li YB, Zhou J. Resveratrol attenuates type 2 diabetes mellitus by mediating mitochondrial biogenesis and lipid metabolism via Sirtuin type 1. Exp Ther Med 2018;15:576–584.

    CAS  PubMed  Google Scholar 

  33. Ding M, Lei J, Han H, Li W, Qu Y, Fu E, et al. SIRT1 protects against myocardial ischemia-reperfusion injury via activating eNOS in diabetic rats. Cardiovasc Diabetol 2015;14:143.

    PubMed  PubMed Central  Google Scholar 

  34. Cattelan A, Ceolotto G, Bova S, Albiero M, Kuppusamy M, De Martin S, et al. NAD+-dependent SIRT1 deactivation has a key role on ischemia-reperfusion-induced apoptosis. Vascul Pharmacol 2015;70:35–44.

    CAS  PubMed  Google Scholar 

  35. Bugger H, Witt CN, Bode C. Mitochondrial sirtuins in the heart. Heart Fail Rev 2016;21:519–528.

    CAS  PubMed  Google Scholar 

  36. Boal F, Timotin A, Roumegoux J, Alfarano C, Calise D, Anesia R, et al. Apelin-13 administration protects against ischaemia/reperfusion-mediated apoptosis through the FoxO1 pathway in high-fat diet-induced obesity. Br J Pharmacol 2016;173:1850–1863.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ning Y, Li Z, Qiu Z. FOXO1 silence aggravates oxidative stress-promoted apoptosis in cardiomyocytes by reducing autophagy. Toxicol Sci 2015;40:637–645.

    CAS  Google Scholar 

  38. Ding C, Zou Q, Wang F, Wu H, Wang W, Li H, et al. HGF and BFGF secretion by human adipose-derived stem cells improves ovarian function during natural aging via activation of the SIRT1/FOXO1 signaling pathway. Cell Physiol Biochem 2018;45:1316–1332.

    CAS  PubMed  Google Scholar 

  39. Taka C, Hayashi R, Shimokawa K, Tokui K, Okazawa S, Kambara K, et al. SIRT1 and FOXO1 mRNA expression in PBMC correlates to physical activity in COPD patients. Int J Chron Obstruct Pulmon Dis 2017;12:3237–3244.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang B, Ding W, Zhang M, Li H, Guo H, Lin L, et al. Role of FOXO1 in aldosterone-induced autophagy: a compensatory protective mechanism related to podocyte injury. Oncotarget 2016;7:45331–45351.

    PubMed  PubMed Central  Google Scholar 

  41. Ding X, Zhang W, Zhao T, Yan C, Du H. Rab7 GTPase controls lipid metabolic signaling in myeloid-derived suppressor cells. Oncotarget 2017;8:30123–30137.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The authors are grateful for facility and field assistance from the Tianjin University of Traditional Chinese Medicine.

Author information

Authors and Affiliations

Authors

Contributions

Qi X designed experiments; Sun DW and Gao Q carried out experiments, analyzed experimental results, sequencing data and wrote the manuscript.

Corresponding author

Correspondence to Xin Qi.

Ethics declarations

The authors confirm that there are no conflicts of interest.

Additional information

Supported by Science and Technology Planning Projects of Science and Technology Commission of Tianjin (No. 18ZXDBSY00080), National Natural Science Foundation of China (No. 81503504), and Key Medical and Health Projects of Health and Family Planning Commission of Tianjin (No. 2015KG110)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Dw., Gao, Q. & Qi, X. Danshensu Ameliorates Cardiac Ischaemia Reperfusion Injury through Activating Sirt1/FoxO1/Rab7 Signal Pathway. Chin. J. Integr. Med. 26, 283–291 (2020). https://doi.org/10.1007/s11655-019-3165-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-019-3165-9

Key words

Navigation