Skip to main content
Log in

Research Progress in Astragalus Membranaceus and Its Active Components on Immune Responses in Liver Fibrosis

  • Review
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

The interaction between immune cells and hepatic stellate cells (HSCs) can modulate the development of hepatic fibrosis. It can also regulate hepatic fibrosis and liver cirrhosis caused by excessive deposition of extracellular matrix (ECM). This article reviews the action mechanism of immune cells on liver fibrosis and the effect of Astragalus membranaeus and its active components on immune cells. In-depth study of interaction between immune cells and HSCs on the pathogenesis of liver fibrosis, and the regulatory effect of Astragalus membranaeus and its active components on immune mechanism will provide new insights in the treatment of liver fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hernandez-Gea V, Friedman SL. Pathogenesis of liver fibrosis. Annu Rev Pathol 2011;6:425–456.

    CAS  PubMed  Google Scholar 

  2. Vela D. Low hepcidin in liver fibrosis and cirrhosis: a tale of progressive disorder and a case for a new biochemical marker. Mol Med 2018;24:5.

    PubMed  PubMed Central  Google Scholar 

  3. Ekihiro S, Brenner DA. Recent advancement of molecular mechanisms of liver fibrosis. J Hepatobil Pancreat Sci 2015;22:512–518.

    Google Scholar 

  4. Ren L, Wang XF, Li S, et al. Effect of gamma irradiation on structure, physicochemical and immunomodulatory properties of Astragalus polysaccharides. Int J Biol Macromol 2018;120:641–649.

    CAS  PubMed  Google Scholar 

  5. Zhu N, Lv XC, Wang YY, et al. Comparison of immunoregulatory effects of polysaccharides from three natural herbs and cellular uptake in dendritic cells. Int J Biol Macromol 2016;93:940–951.

    CAS  PubMed  Google Scholar 

  6. Pratim SM, Mohammad A, Subhash M, et al. Hepatitis C virus related hepatocellular carcinoma: a case control study from India. J Med Virol 2012;84:1009–1017.

    Google Scholar 

  7. El-Bakry HA, El-Sherif G, Rostom RM. Therapeutic dose of green tea extract provokes liver damage and exacerbates paracetamol-induced hepatotoxicity in rats through oxidative stress and caspase 3-dependent apoptosis. Biomed Pharmacother 2017;96:798–811.

    CAS  PubMed  Google Scholar 

  8. Kastanis GJ, Hernandez-Nazara Z, Nieto N, et al. The role of dystroglycan in PDGF-BB-dependent migration of activated hepatic stellate cells/myofibroblasts. Am J Physiol Gastrointest Liver Physiol 2011;301:G464–G474.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. NI Y, Li JM, Liu MK, et al. Pathological process of liver sinusoidal endothelial cells in liver diseases. World J Gastroenterol 2017;23:7666–7677.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Friedman SL. Evolving challenges in hepatic fibrosis. Nat Rev Gastroenterol Hepatol 2010;7:425–436.

    PubMed  Google Scholar 

  11. Song Y, Zhao Y, Wang F, et al. Autophagy in hepatic fibrosis. Biomed Res Intern 2014;2014:436242.

    Google Scholar 

  12. Seki E, Schwabe RF. Hepatic inflammation and fibrosis: functional links and key pathways. Hepatology 2015;61:1066–1079.

    PubMed  PubMed Central  Google Scholar 

  13. Radaeva S, Wang L, Radaev S, et al. Retinoic acid signaling sensitizes hepatic stellate cells to NK cell killing via upregulation of NK cell activating ligand RAE1. Am J Physiol Gastrointest Liver Physiol 2007;293:G809–G816.

    CAS  PubMed  Google Scholar 

  14. Krizhanovsky V, Yon M, Dickins RA, et al. Senescence of activated stellate cells limits liver fibrosis. Cell 2008;134:657–667.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gur C, Doron S, Kfir-Erenfeld S, et al. NKp46-mediated killing of human and mouse hepatic stellate cells attenuates liver fibrosis. Gut 2012;61:885–893.

    CAS  PubMed  Google Scholar 

  16. Gla sner A, Eisenhardt M, Benjamin K, et al. NK cells from HCV-infected patients effectively induce apoptosis of activated primary human hepatic stellate cells in a TRAIL-, FasL- and NKG2D-dependent manner. Laborat Invest 2012;92:967–977.

    Google Scholar 

  17. Yi HS, Jeong WI. Interaction of hepatic stellate cells with diverse types of immune cells: foe or friend? J Gastroenterol Hepatol 2013;28:99–104.

    CAS  PubMed  Google Scholar 

  18. Kong X, Feng D, Wang H, et al. Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice. Hepatology 2012;56:1150–1159.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang-Gun S, Kyung KJ, Jin-Seok B, et al. CD11b(+) Gr1(+) bone marrow cells ameliorate liver fibrosis by producing interleukin-10 in mice. Hepatology 2012;56:1902–1912.

    Google Scholar 

  20. Jin Z, Sun R, Wei H, et al. Accelerated liver fibrosis in hepatitis B virus transgenic mice: involvement of natural killer T cells. Hepatology 2011;53:219–229.

    CAS  PubMed  Google Scholar 

  21. Sachiko I, Kenichi I, Hisafumi Y, et al. CD1d-restricted natural killer T cells contribute to hepatic inflammation and fibrogenesis in mice. J Hepatol 2011;54:1195–1204.

    Google Scholar 

  22. Ogyi P, Won-Il J, Wang L, et al. Diverse roles of invariant natural killer T cells in liver injury and fibrosis induced by carbon tetrachloride. Hepatology 2009;49:1683–1694.

    Google Scholar 

  23. Jin ML, Zhao K, Huang QS, et al. Structural features and biological activities of the polysaccharides from Astragalus membranaceus. Int J Biol Macromol 2014;64:257–266.

    CAS  PubMed  Google Scholar 

  24. Kuo YH, Tsai WJ, Loke SH, et al. Astragalus membranaceus flavonoids (AMF) ameliorate chronic fatigue syndrome induced by food intake restriction plus forced swimming. J Ethnopharmacol 2009;122:28–34.

    CAS  PubMed  Google Scholar 

  25. Wu Y, Li YY, Liu C, et al. Structural characterization of an acidic epimedium polysaccharide and its immuneenhancement activity. Carbohyd Polym 2016;15:134–142.

    Google Scholar 

  26. Liu M, Qin J, Hao YR, et al. Astragalus polysaccharide suppresses skeletal muscle myostatin expression in diabetes: involvement of ROS-ERK and NF-κB pathways. Oxid Med Cell Longev 2013;2013:782497.

    PubMed  PubMed Central  Google Scholar 

  27. Wu J, Wang J, Su Q, et al. Traditional Chinese medicine Astragalus polysaccharide enhanced antitumor effects of the angiogenesis inhibitor apatinib in pancreatic cancer cells on proliferation, invasiveness, and apoptosis. Onco Targets Ther 2018;11:2685–2698.

    PubMed  PubMed Central  Google Scholar 

  28. Lee KY, Jeon YJ. Macrophage activation by polysaccharide isolated from Astragalus membranaceus. Int Immunopharmacol 2005;5:1225–1233.

    CAS  PubMed  Google Scholar 

  29. Zhuge ZY, Dong YP, Li L, et al. Effects of Astragalus polysaccharide on the adhesion-related immune response of endothelial cells stimulated with CSFV in vitro. Peer J 2017;5:e3862.

    PubMed  Google Scholar 

  30. Yin XL, Chen L, Liu Y, et al. Enhancement of the innate immune response of bladder epithelial cells by Astragalus polysaccharides through upregulation of TLR4 expression. Biochemical Biophysical Res Commun 2010;397:232–238.

    CAS  Google Scholar 

  31. Xie JH, Jin ML, Morris GA. Advances on bioactive polysaccharides from medicinal plants. Crit Rev Food Sci Nutr 2016;56:S60–S84.

    CAS  PubMed  Google Scholar 

  32. Zhang XP, Li YD, Luo LL, et al. Astragalus saponins and liposome constitute an efficacious adjuvant formulation for cancer vaccines. Cancer Biother Radiopharm 2018;33:25–31.

    CAS  PubMed  Google Scholar 

  33. Zhang WM, Ma WR, Song XP, et al. The immunoregulatory activities of astragalus polysaccharide liposome on macrophages and dendritic cells. Int J Biol Macromol 2017;105:852–861.

    CAS  PubMed  Google Scholar 

  34. Chen F, Huang GL. Preparation and immunological activity of polysaccharides and their derivatives. Int J Biol Macromol 2018;112:211–216.

    CAS  PubMed  Google Scholar 

  35. Liu QY, Yao YM, Zhang SW, et al. Astragalus polysaccharides regulate T cell-mediated immunity via CD11c high CD45RB low DCs in vitro. J Ethnopharmacol 2011;136:457–464.

    CAS  PubMed  Google Scholar 

  36. Yuan SL, Pao XS. Effects of dietary Astragalus polysaccharide on growth performance and immune function in weaned pigs. Anim Sci 2006;82:501–557.

    CAS  Google Scholar 

  37. Shao BM, Xu W, Dai H, et al. A study on the immune receptors for polysaccharides from the roots of Astragalus membranaceus, a Chinese medicinal herb. Biochem Biophys Res Commun 2004;320:1103–1111.

    CAS  PubMed  Google Scholar 

  38. Chen W, Li Y, Yu M. Astragalus polysaccharides: an effective treatment for diabetes prevention in NOD mice. Exp Clin Endocrinol Diabetes 2008;116:468–474.

    CAS  PubMed  Google Scholar 

  39. Li RJ, Qiu SD, Chen HX, et al. The immuno-therapeutic effects of Astragalus polysaccharide in type 1 diabetic mice. Biol Pharm Bull 2007;30:470–476.

    CAS  PubMed  Google Scholar 

  40. He X, Shu J, Xu L, et al. Inhibitory effect of Astragalus polysaccharides on lipopolysaccharide-induced TNF-α and IL-1β production in THP-1 cells. Molecules 2012;17:3155–3164.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lu JZ, Chen X, Zhang YY, et al. Astragalus polysaccharide induces anti-inflammatory effects dependent on AMPK activity in palmitate-treated RAW264.7 cells. Int J Mol Med 2013;31:1463–1470.

    CAS  PubMed  Google Scholar 

  42. Huang WM, Liang YQ, Tang LJ, et al. Antioxidant and anti-inflammatory effects of Astragalus polysaccharide on EA.hy926 cells. Exp Ther Med 2013;6:199–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Tse Anfernee KW, Wan CK, Shen XL, et al. Honokiol inhibits TNF-alpha-stimulated NF-kappaB activation and NF-kappaB-regulated gene expression through suppression of IKK activation. Biochem Pharmacol 2005;70:1443–1457.

    CAS  PubMed  Google Scholar 

  44. Brando-Lima AC, Saldanha-Gama RF, Pereira CR, et al. Involvement of phosphatidylinositol-3 kinase-Akt and nuclear factor kappa-B pathways in the effect of frutalin on human lymphocyte. Int Immunopharmacol 2006;6:465–472.

    CAS  PubMed  Google Scholar 

  45. Yang SL, Hu SH, Hsieh YC, et al. Mechanism of IL-6- mediated cardiac dysfunction following trauma-hemorrhage. J Mol Cell Cardiol 2006;40:570–579.

    CAS  PubMed  Google Scholar 

  46. Hang CH, Shi JX, Li JS, et al. Expressions of intestinal NF-κB, TNF-α, and IL-6 following traumatic brain injury in rats. J Surg Res 2005;123:188–193.

    CAS  PubMed  Google Scholar 

  47. Meylan E, Dooley AL, Feldser DM, et al. Requirement for NF- kappaB signalling in a mouse model of lung adenocarcinoma. Nature 2009;462:104–107.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lv J, Zhang YH, Tian ZQ, et al. Astragalus polysaccharides protect against dextran sulfate sodium-induced colitis by inhibiting NF-κB activation. Int J Biol Macromol 2017;98:723–729.

    CAS  PubMed  Google Scholar 

  49. Kwok-Kin LP, Yuet-Wa CJ, Wu SB, et al. Anti-inflammatory activities of an active fraction isolated from the root of Astragalus membranaceus in RAW 264.7 macrophages. Phytother Res 2014;28:395–404.

    Google Scholar 

  50. Wu Q, Yang Y, Xue SL, et al. Effect of astragalosides on proliferation and collagen production of hepatic stellate cells in vitro. Chin Pharm Bull 2003;19:892–895.

    CAS  Google Scholar 

  51. Sun WY, Wei W, Wu L, et al. Effects and mechanisms of extract from Paeonia lactiflora and Astragalus membranaceus on liver fibrosis induced by carbon tetrachloride in rats. J Ethnopharmacol 2007;112:514–523.

    PubMed  Google Scholar 

  52. Duffield JS. The inflammatory macrophage: a story of Jekyll and Hyde. Clin Sci 2003;104:27–38.

    CAS  PubMed  Google Scholar 

  53. Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology 2008;134:1655–1669.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Schuppan D, Ashfaq-Khan M, Yang AT, et al. Liver fibrosis: direct antifibrotic agents and targeted therapies. Matrix Biol 2018;68–69.

    Google Scholar 

  55. He X, Shu J, Xu L, et al. Inhibitory effect of Astragalus polysaccharides on lipopolysaccharide-induced TNF-α and IL-1β production in THP-1 cells. Molecules 2012;17:3155–3164.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hamid M, Liu DD, Abdulrahim Y, et al. Amelioration of CCl4-induced liver injury in rats by selenizing Astragalus polysaccharides: role of proinflammatory cytokines, oxidative stress and hepatic stellate cells. Res Vet Sci 2017;114:202–211.

    CAS  PubMed  Google Scholar 

  57. Xie G, Wang X, Wang L, et al. Role of differentiation of liver sinusoidal endothelial cells in progression and regression of hepatic fibrosis in rats. Gastroenterology 2012;142:918–927.

    PubMed  Google Scholar 

  58. Friedman SL. Focus. J Hepatol 2014;60:1–2.

    PubMed  Google Scholar 

  59. Lu WL, Li JM, Yang J, et al. Effects of Astragalus polysaccharide on mechanical characterization of liver sinusoidal endothelial cells by atomic force microscopy at nanoscale. Chin J Integr Med 2018;24:455–459.

    CAS  PubMed  Google Scholar 

  60. Proietto AI, van Dommelen S, Zhou PH, et al. Dendritic cells in the thymus contribute to T-regulatory cell induction. Proc Natl Acad Sci USA 2008;105:19869–19874.

    CAS  PubMed  Google Scholar 

  61. Zhang HY, Guo MF, Zhang LH, et al. Anti-inflammatory effect and mechanisms of Huangqi glycoprotein in treating experimental autoimmune encephalomyelitis. Folia Neuropathol 2017;55:308–316.

    PubMed  Google Scholar 

  62. Jiang JB, Qiu JD, Yang LH, et al. Therapeutic effects of astragalus polysaccharides on inflammation and synovial apoptosis in rats with adjuvant-induced arthritis. Int J Rheum Dis 2010;13:396–405.

    PubMed  Google Scholar 

  63. Liao JZ, Li CY, Huang J, et al. Structure characterization of honey-processed Astragalus Polysaccharides and its antiinflammatory activity in vitro. Molecules 2018;23:168.

    PubMed Central  Google Scholar 

  64. Qian WB, Cai XR, Qian QH, et al. Astragaloside IV modulates TGF-β1-dependent epithelial-mesenchymal transition in bleomycin-induced pulmonary fibrosis. J Cell Mol Med 2018;22:4354–4365.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang XL, Gao YB, Tian NX, et al. Astragaloside IV improves renal function and fibrosis via inhibition of miR-21-induced podocyte dedifferentiation and mesangial cell activation in diabetic mice. Drug Des Devel Ther 2018;12:2431–2442.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Li Y, Meng TT, Hao N, et al. Immune regulation mechanism of Astragaloside IV on RAW264.7 cells through activating the NF-κB/MAPK signaling pathway. Int Immunopharmacol 2017;49:38–49.

    CAS  PubMed  Google Scholar 

  67. Li JF, Huang LF, Wang SZ, et al. Astragaloside IV attenuates inflammatory reaction via activating immune function of regulatory T-cells inhibited by HMGB1 in mice. Pharm Biol 2016;54:3217–3225.

    CAS  PubMed  Google Scholar 

  68. Wang B, Chen MZ. Astragaloside IV possesses antiarthritic effect by preventing interleukin 1β-induced joint inflammation and cartilage damage. Arch Pharm Res 2014;37:793–802.

    CAS  PubMed  Google Scholar 

  69. Liu Q, Zhang L, Shan QY, et al. Total flavonoids from Astragalus alleviate endothelial dysfunction by activating the Akt/eNOS pathway. J Int Med Res 2018;46:2096–2103.

    CAS  PubMed  Google Scholar 

  70. Guo Z, Xu HY, Xu L, et al. In vivo and in vitro immunomodulatory and anti-inflammatory effects of total flavonoids of astragalus. Afr J Tradit Complement Altern Med 2016;13:60–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu XY, Xu L, Wang Y, et al. Protective effects of total flavonoids of Astragalus against adjuvant-induced arthritis in rats by regulating OPG/RANKL/NF-κB pathway. Int Immunopharmacol 2017;44:105–114.

    CAS  PubMed  Google Scholar 

  72. Zhang DQ, Zhuang Y, Pan JC, et al. Investigation of effects and mechanisms of total flavonoids of Astragalus and calycosin on human erythroleukemia cells. Oxid Med Cell Longev 2012;2012:209843.

    PubMed  PubMed Central  Google Scholar 

  73. Wang DQ, Zhuang Y, Tian YP, et al. Study of the effects of total flavonoids of Astragalus on atherosclerosis formation and potential mechanisms. Oxid Med Cell Longev 2012;2012:282383.

    PubMed  PubMed Central  Google Scholar 

  74. Han R, Wu WQ, Wu XP, et al. Effect of total flavonoids from the seeds of Astragali complanation natural killer cell function. J Ethnopharmacol 2015;173:157–165.

    CAS  PubMed  Google Scholar 

  75. Cheng Y, Mai JY, Wang MF, et al. Antifibrotic effect of total flavonoids of Astmgali Radix on dimethylnitrosamine-induced liver cirrhosis in rats. Chin J Integr Med 2017;23:48–54.

    CAS  PubMed  Google Scholar 

  76. Wu XL, Ding XQ, Ding ZS, et al. Total flavonoids from leaves of Carya Cathayensis ameliorate renal fibrosis via the miR-21/Smad7 signaling pathway. Cell Physiol Biochem 2018;49:1551–1563.

    CAS  PubMed  Google Scholar 

  77. Chao YH, Wu KH, Lin CW, et al. PG2, a botanically derived drug extracted from Astragalus membranaceus, promotes proliferation and immunosuppression of umbilical cordderived mesenchymal stem cells. J Ethnopharmacol 2017;207:184–191.

    PubMed  Google Scholar 

  78. Schmeltzer PA, Russo MW. Clinical narrative: autoimmune hepatitis. Am J Gastroenterol 2018;113:951–958.

    PubMed  Google Scholar 

  79. Kwok-Kin LP, Yuet-Wa CJ, Wu SB, et al. Anti-inflammatory activities of an active fraction isolated from the root of Astragalus membranaceus in RAW 264.7 macrophages. Phytother Res 2014;28:395–404.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-liang Lv.

Additional information

Conflict of Interest

All authors declared no conflict of interest.

Author Contributions

Liu YT designed the review and wrote the article; Lv WL contributed to the critical revision of the manuscript for important intellectual content.

Supported by the National Natural Science Foundation of China (No.81774282) and Beijing Natural Science Foundation (No. 7172187)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Yt., Lv, Wl. Research Progress in Astragalus Membranaceus and Its Active Components on Immune Responses in Liver Fibrosis. Chin. J. Integr. Med. 26, 794–800 (2020). https://doi.org/10.1007/s11655-019-3039-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-019-3039-1

Keywords

Navigation