Skip to main content

Article Effect and Mechanism of Ganoderma lucidum Polysaccharides on Human Fibroblasts and Skin Wound Healing in Mice

Abstract

Objective

To investigate the effects of Ganoderma lucidum polysaccharides (GL-PS) on human fibroblasts and skin wound healing in Kunming male mice and to explore the putative molecular mechanism.

Methods

Primary human skin fibroblasts were cultured. The viability of fibroblasts treated with 0, 10, 20, 40, 80, and 160 μg/mL of GL-PS, respectively were detected by 3–4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2-Htetrazolium bromide (MTT). The migration ability of fibroblasts treated with 0, 10, 20, and 40 μg/mL of GL-PS were measured by transwell assay. The secretion of the C-terminal peptide of procollagen type I (CICP) and transforming growth factor-β1 (TGF-β1) in the cell supernatant was tested by enzyme-linked immunosorbent assay. The expression of β-catenin was detected by Western blot. Furthermore, the Kunming mouse model with full-layer skin resection trauma was established, and was treated with 10, 20, and 40 mg/mL of GL-PS, respectively as external use. The size of the wound was measured daily, complete healing time in each group was recorded and the percentage of wound contraction was calculated.

Results

Compared with the control group, 10, 20, and 40 μg/mL of GL-PS significantly increased the viability of fibroblasts, promoted the migration ability of fibroblasts, and up-regulated the expressions of CICP and TGF-β1 in fibroblasts (Plt;0.05 or Plt;0.01). The expression of β-catenin in fibroblasts treated with 20 and 40 μg/mL of GL-PS was significantly higher than that of the control group (Plt;0.01). Furthermore, after external use of 10, 20, and 40 mg/mL of GL-PS, the rates of wound healing in mice were significantly higher and the wound healing time was significantly less than the control group (Plt;0.05 or Plt;0.01).

Conclusion

A certain concentration of GL-PS may promote wound healing via activation of the Wnt/β-catenin signaling pathway and up-regulation of TGF-β1, which might serve as a promising source of skin wound healing.

This is a preview of subscription content, access via your institution.

References

  1. Khoshneviszadeh M, Ashkani–Esfahani S, Namazi MR, Noorafshan A, Geramizadeh B, Miri R. Topical simvastatin enhances tissue regeneration in full–thickness skin wounds in rat models. Iran J Pharm Res 2014;13:263–269.

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Paterson RR. Ganoderma—a therapeutic fungal biofactory. Phytochemistry 2006;67:1985–2001.

    Article  PubMed  CAS  Google Scholar 

  3. Eming SA, Brachvogel B, Odorisio T, Koch M. Regulation of angiogenesis: wound healing as a model. Prog Histochem Cytochem 2007;42:115–170.

    Article  PubMed  CAS  Google Scholar 

  4. Ponnusamy Y, Chear NJ, Ramanathan S, Lai CS. Polyphenols rich fraction of Dicranopteris linearis promotes fibroblast cell migration and proliferation in vitro. J Ethnopharmacol 2015;168:305–314.

    Article  PubMed  CAS  Google Scholar 

  5. Cheon SS, Cheah AY, Turley S, Nadesan P, Poon R, Clevers H, et al. Beta–catenin stabilization dysregulates mesenchymal cell proliferation, motility, and invasiveness and causes aggressive fibromatosis and hyperplastic cutaneous wounds. Proc Natl Acad Sci U S A 2002;99:6973–6978.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Cheon S, Poon R, Yu C, Khoury M, Shenker R, Fish J, et al. Prolonged beta–catenin stabilization and TCF–dependent transcriptional activation in hyperplastic cutaneous wounds. Lab Invest 2005;85:416–425.

    Article  PubMed  CAS  Google Scholar 

  7. Cheon SS, Nadesan P, Poon R, Alman BA. Growth factors regulate beta–catenin–mediated TCF–dependent transcriptional activation in fibroblasts during the proliferative phase of wound healing. Exp Cell Res 2004;293:267–274.

    Article  PubMed  CAS  Google Scholar 

  8. Cheon SS, Wei Q, Gurung A, Youn A, Bright T, Poon R, et al. Beta–catenin regulates wound size and mediates the effect of TGF–beta in cutaneous healing. FASEB J 2006;20:692–701.

    Article  PubMed  CAS  Google Scholar 

  9. Jin H, Jin F, Jin JX, Xu J, Tao TT, Liu J, et al. Protective effects of Ganoderma lucidum spore on cadmium hepatotoxicity in mice. Food Chem Toxicol 2013;52:171–175.

    Article  PubMed  CAS  Google Scholar 

  10. Tasaka K, Mio M, Izushi K, Akagi M, Makino T. Anti–allergic constituents in the culture medium of Ganoderma lucidum. (). The inhibitory effect of cyclooctasulfur on histamine release. Agents Actions 1988;23:157–160.

    PubMed  CAS  Google Scholar 

  11. Bhardwaj N, Katyal P, Sharma AK. Suppression of inflammatory and allergic responses by pharmacologically potent fungus Ganoderma lucidum. Recent Pat Inflamm Allergy Drug Discov 2014;8:104–117.

    Article  PubMed  CAS  Google Scholar 

  12. Chang CJ, Lin CS, Lu CC, Martel J, Ko YF, Ojcius DM, et al. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat Commun 2015;6:7489.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Boh B. Ganoderma lucidum: a potential for biotechnological production of anti–cancer and immunomodulatory drugs. Recent Pat Anticancer Drug Discov 2013;8:255–287.

    Article  PubMed  CAS  Google Scholar 

  14. Guo L, Xie J, Ruan Y, Zhou L, Zhu H, Yun X, et al. Characterization and immunostimulatory activity of a polysaccharide from the spores of Ganoderma lucidum. Int Immunopharmacol 2009;9:1175–1182.

    Article  PubMed  CAS  Google Scholar 

  15. Yang Q, Wang S, Xie Y, Sun J, Wang J. HPLC analysis of Ganoderma lucidum polysaccharides and its effect on antioxidant enzymes activity and Bax, Bcl–2 expression. Int J Biol Macromol 2010;46:167–172.

    Article  PubMed  CAS  Google Scholar 

  16. Zhou ZY, Tang YP, Xiang J, Wua P, Jin HM, Wang Z, et al. Neuroprotective effects of water–soluble Ganoderma lucidum polysaccharides on cerebral ischemic injury in rats. J Ethnopharmacol 2010;131:154–164.

    Article  PubMed  CAS  Google Scholar 

  17. Kan Y, Chen T, Wu Y, Wu J, Wu J. Antioxidant activity of polysaccharide extracted from Ganoderma lucidum using response surface methodology. Int J Biol Macromol 2015;72:151–157.

    Article  PubMed  CAS  Google Scholar 

  18. Zhang S, Nie S, Huang D, Huang J, Feng Y, Xie M. Ganoderma atrum polysaccharide evokes antitumor activity via cAMP–PKA mediated apoptotic pathway and downregulation of Ca2+/PKC signal pathway. Food Chem Toxicol 2014;68:239–246.

    Article  PubMed  CAS  Google Scholar 

  19. Ferreira IC, Heleno SA, Reis FS, Stojkovic D, Queiroz MJ, Vasconcelos MH, et al. Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities. Phytochemistry 2015;114:38–55.

    Article  PubMed  CAS  Google Scholar 

  20. Sun LX, Chen LH, Lin ZB, Qin Y, Zhang JQ, Yang J, et al. Effects of Ganoderma lucidum polysaccharides on IEC–6 cell proliferation, migration and morphology of differentiation benefiting intestinal epithelium healing in vitro. J Pharm Pharmacol 2011;63:1595–1603.

    Article  PubMed  CAS  Google Scholar 

  21. Tie L, Yang HQ, An Y, Liu SQ, Han J, Xu Y, et al. Ganoderma lucidum polysaccharide accelerates refractory wound healing by inhibition of mitochondrial oxidative stress in type 1 diabetes. Cell Physiol Biochem 2012;29:583–594.

    Article  PubMed  CAS  Google Scholar 

  22. Xiao C, Wu Q, Zhang J, Xie Y, Cai W, Tan J. Antidiabetic activity of Ganoderma lucidum polysaccharides F31 downregulated hepatic glucose regulatory enzymes in diabetic mice. J Ethnopharmacol 2017;196:47–57.

    Article  PubMed  CAS  Google Scholar 

  23. Cao LZ, Lin ZB. Regulation on maturation and function of dendritic cells by Ganoderma lucidum polysaccharides. Immunol Lett 2002;83:163–169.

    Article  PubMed  CAS  Google Scholar 

  24. Whyte JL, Smith AA, Helms JA. Wnt signaling and injury repair. Cold Spring Harbor Perspect Biol 2012;4:a008078.

    Article  CAS  Google Scholar 

  25. Zhang Y, Lin Z, Foolen J, Schoen I, Santoro A, Zenobi–Wong M, et al. Disentangling the multifactorial contributions of fibronectin, collagen and cyclic strain on MMP expression and extracellular matrix remodeling by fibroblasts. Matrix Biol 2014;40:62–72.

    Article  PubMed  CAS  Google Scholar 

  26. Zhang Q, Wei F, Fong CC, Yu WK, Chen Y, Koon CM, et al. Transcriptional profiling of human skin fibroblast cell line Hs27 induced by herbal formula Astragali Radix and Rehmanniae Radix. J Ethnopharmacol 2011;138:668–675.

    Article  PubMed  CAS  Google Scholar 

  27. Kishimoto J, Burgeson RE, Morgan BA. Wnt signaling maintains the hair–inducing activity of the dermal papilla. Genes Dev 2000;14:1181–1185.

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Ohyama M, Zheng Y, Paus R, Stenn KS. The mesenchymal component of hair follicle neogenesis: background, methods and molecular characterization. Exp Dermatol 2010;19:89–99.

    Article  PubMed  Google Scholar 

  29. Yang CC, Cotsarelis G. Review of hair follicle dermal cells. J Dermatol Sci 2010;57:2–11.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Millar SE. Molecular mechanisms regulating hair follicle development. J Invest Dermatol 2002;118:216–225.

    Article  PubMed  CAS  Google Scholar 

  31. Schneider MR, Schmidt–Ullrich R, Paus R. The hair follicle as a dynamic miniorgan. Curr Biol 2009;19:R132–142.

    Article  PubMed  CAS  Google Scholar 

  32. Wei LH, Lin JM, Chu JF, Chen HW, Li QY, Peng J. Scutellaria barbata D. Don inhibits colorectal cancer growth via suppression of Wnt/β–catenin signaling pathway. Chin J Integr Med 2017;23:858–863.

    PubMed  Google Scholar 

  33. Fathke C, Wilson L, Shah K, Kim B, Hocking A, Moon R, et al. Wnt signaling induces epithelial differentiation during cutaneous wound healing. BMC Cell Biol 2006;7:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Collins CA, Kretzschmar K, Watt FM. Reprogramming adult dermis to a neonatal state through epidermal activation of beta–catenin. Development 2011;138:5189–5199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Pandit V, Nesbitt SR, Kim DY, Mixon A, Kotha SP. Combinatorial therapy using negative pressure and varying lithium dosage for accelerated wound healing. J Mech Behav Biomed Mater 2015;44:173–178.

    Article  PubMed  CAS  Google Scholar 

  36. Caraci F, Gili E, Calafiore M, Failla M, La Rosa C, Crimi N, et al. TGF–beta1 targets the GSK–3beta/beta–catenin pathway via ERK activation in the transition of human lung fibroblasts into myofibroblasts. Pharmacol Res 2008;57:274–282.

    Article  PubMed  CAS  Google Scholar 

  37. Maki H. Origins of spontaneous mutations. specificity and directionality of base–substitution, frameshift, and sequencesubstitution mutageneses. Annu Rev Genet 2002;36:279–303.

    Article  PubMed  CAS  Google Scholar 

  38. Miyoshi H, Ajima R, Luo CT, Yamaguchi TP, Stappenbeck TS. Wnt5a potentiates TGF–beta signaling to promote colonic crypt regeneration after tissue injury. Science 2012;338:108–113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-da Zhou.

Additional information

Supported by the Fundamental Research Funds for the Central Universities of Central South University (No. 2017zzts235)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, F., Yan, Y., Wang, Cw. et al. Article Effect and Mechanism of Ganoderma lucidum Polysaccharides on Human Fibroblasts and Skin Wound Healing in Mice. Chin. J. Integr. Med. 25, 203–209 (2019). https://doi.org/10.1007/s11655-018-3060-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-018-3060-9

Keywords

  • Ganoderma lucidum polysaccharides
  • human fibroblast
  • wound healing
  • transforming growth factor-β1
  • Wnt/β-catenin signaling pathway