Skip to main content

Advertisement

Log in

Therapy to Obese Type 2 Diabetes Mellitus: How Far Will We Go Down the Wrong Road?

  • Review
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Traditional glucose-lowering chemical agents, including various types of insulin and insulin secretagogues, insulin sensitizers, gliptins, etc., are based on diabetic pathogenesis of insulin resistance (IR) and islet insufficiency. Numerous evidence-based medical studies have shown that these traditional hypoglycemic chemical agents do not provide cardiovascular benefit to patients with type 2 diabetes mellitus (T2DM) and may even increase the risk of all-cause mortality. Based on research evidence published to date, these studies show that overload of energy could increase the incidence and prevalence of T2DM, and reduction in the heat load can significantly reduce the incidence of T2DM. Therefore, the essence of T2DM is heat overload, meaning heat overload is the etiology of obese T2DM. At the same time, results of numerous studies show that heat overloading is the cause of IR. IR and islet dysfunction are protective factors in intervening with heat overload. These drugs, which are based on the mechanisms of IR and islet insufficiency, increase caloric reserve and cause or worsen obesity, which is equivalent to exacerbating the basic etiology and the cardiovascular risk factor of T2DM. Thus, a reasonable strategy for prevention and treatment of obese T2DM appears to promote the negative balance of calories and the elimination of caloric reserves. Chinese herbal medicines can promote negative balance of heat in many aspects, which can bring new hope for prevention and treatment of T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Viera JT, Elmerahbi R, Nieswandt B, et al. Phospholipases D1 and D2 suppress appetite and protect against overweight. PLoS One 2016;11:e0157607.

    Article  CAS  Google Scholar 

  2. Zhang N, Du SM, Ma GS. Current lifestyle factors that increase risk of T2DM in China. Eur J Clin Nutrit 2017;71:832–838.

    Article  CAS  Google Scholar 

  3. National Health and Family Planning Commission Disease Prevention and Control Bureau. Report on the status of Chinese residents′ nutrition and chronic diseases (2015). Beijing: People′s Medical Publishing House; 2015:11–15.

  4. Chinese Diabetes Society. Standards of care for type 2 diabetes in China (2013). Chin J Endocrinol Metab (Chin) 2014;30:26–89.

    Google Scholar 

  5. Yang WY, Lu JM, Weng JP, et al. Prevalence of diabetes among men and women in China. New Engl J Med 2010;362:1090–1101.

    Article  CAS  PubMed  Google Scholar 

  6. Xu Y, Wang L, He J, et al. Prevalence and control of diabetes in Chinese adults. JAMA 2013;310:948–959.

    Article  CAS  PubMed  Google Scholar 

  7. Wang WH, Wu ZS, Wang W, et al. Dietary changes between 1988 and 1996 in Beijing. J Cardiovasc Pulmon Dis (Chin) 1998;16:175–177.

    Google Scholar 

  8. Mou XS. Research and analysis of current status of dietary patterns for college students in Sichuan province. J Chengdu Electromechan Coll (Chin) 2017;20:97–100.

    Google Scholar 

  9. Fogelholm M, Kanerva N, Männistö S. Association between red and processed meat consumption and chronic diseases: the confounding role of other dietary factors. Eur J Clin Nutrit 2015;69:1060–1065.

    Article  CAS  Google Scholar 

  10. Li FD, Gu Y. Intake of American adults′ fruits and vegetables and the incidence of diatebes studies. J Shenyang Univ (Chin) 2001;21:170–173.

    CAS  Google Scholar 

  11. Chen Z. US centers for disease control and prevention data show: the incidence of diabetes increased significantly. Chin J Food Sci (Chin) 2012;12:197–198.

    CAS  Google Scholar 

  12. Troiano RP, Flegal KM. Overweight children and adolescents: description, epidemiology, and demographics. Pediatrics 1998;101:497–504.

    Article  CAS  PubMed  Google Scholar 

  13. Fagot-Campagna A, Pettitt DJ, Engelgau MM, et al. Type 2 diabetes among North American children and adolescents: an epidemiologic review and a public health perspective. J Pediatr 2000;136:664–672.

    Article  CAS  PubMed  Google Scholar 

  14. Zhu C. Prevention and treatment of type 2 diabetes in children and adolescents and its implementation and evaluation. J Pract Diabetol (Chin) 2004;12:7–10.

    Google Scholar 

  15. Dabelea D, Mayerdavis EJ, Saydah S, et al. Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA 2014;311:1778–1786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Panagiotakos DB, Pitsavos C, Arvaniti F, et al. Adherence to the Mediterranean food pattern predicts the prevalence of hypertension, hypercholesterolemia, diabetes and obesity, among healthy adults; the accuracy of the MedDietScore. Prevent Med 2007;44:335–340.

    Article  Google Scholar 

  17. Li G, Zhang P, Wang J, et al. The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: a 20-year follow-up study. Lancet 2008;371:1783–1789.

    Article  PubMed  Google Scholar 

  18. Gong Q, Gregg EW, Wang J, et al. Long-term effects of a randomised trial of a 6-year lifestyle intervention in impaired glucose tolerance on diabetes-related microvascular complications: the China Da Qing Diabetes Prevention Outcome Study. Diabetologia 2011;54:300–307.

    Article  CAS  PubMed  Google Scholar 

  19. Nathan DM, Barrettconnor E, Crandall JP, et al. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications: the DPP outcomes study. Lancet Diabetes Endocrinol 2015;3:866–875.

    Article  CAS  PubMed Central  Google Scholar 

  20. Aroda VR, Christophi CA, Edelstein SL, et al. The effect of lifestyle intervention and metformin on preventing or delaying diabetes among women with and without gestational diabetes: the Diabetes Prevention Program outcomes study 10-year follow-up. J Clin Endocrinol Metabol 2015;100:1646–1653.

    Article  CAS  Google Scholar 

  21. Tan SS. Americans are changing dietary habits. Sci Regim (Chin) 2017;7:39–40.

    Google Scholar 

  22. Bareti M, Troskot R. How to fight obesity with antidiabetic drugs: targeting gut or kidney? Minerva Endocrinol 2015;40:71–83.

    Google Scholar 

  23. Li XJ, Insulin resistance syndrome. Beijing: People′s Medical Publishing House; 2007:31–38.

    Google Scholar 

  24. Viera JT, Elmerahbi R, Nieswandt B, et al. Phospholipases D1 and D2 suppress appetite and protect against overweight. PLoS One 2016;11:e0157607.

    Article  CAS  Google Scholar 

  25. Stern SE, Williams K, Ferrannini E, et al. Identitication of individuals with insulin resistance using routine clinical measurements. Diabetes 2005;54:333–339.

    Article  CAS  PubMed  Google Scholar 

  26. Weyer C, Bogardus C, Mott DM, et al. The natural history of insulin secretory dysfunction and insulin resistance in the pathogensis of type 2 diabetes mellitus. J Clin Invest 1999;104:787–794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang G, Li CL, Gong YP, et al. Assessment of insulin resistance in subjects with normal glucose tolerance, hyperinsulinemia with normal blood glucose tolerance, impaired glucose tolerance, and newly diagnosed type 2 diabetes (prediabetes insulin resistance research). J Diabetes Res 2016;2016:9270768.

    PubMed  Google Scholar 

  28. Zeng K, Tian L, Patel R, et al. Diet polyphenol curcumin stimulates hepatic Fgf21 production and restores its sensitivity in high-fat-diet-fed male mice. Endocrinology 2017;158:277–292.

    PubMed  CAS  Google Scholar 

  29. Mojtahedzadeh M, Lee ML, Friedman TC. Continuation or discontinuation of pioglitazone when starting bedtime insulin in patients with poorly controlled type 2 diabetes in an inner-city population. J Diabetes Its Complicat 2015;29:1248–1252.

    Article  Google Scholar 

  30. Yanai H, Adachi H. The low-dose (7. 5 mg/day) pioglitazone therapy. J Clin Med Res 2017;9:821–825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Diane A, Borthwick F, Mapiye C, et al. Beef fat enriched with polyunsaturated fatty acid biohydrogenation products improves insulin sensitivity without altering dyslipidemia in insulin resistant JCR: LA-cp rats. Lipids 2016;51:1–11.

    Article  CAS  Google Scholar 

  32. Kuan HY. Mechanism and clinical management of insulin resistance type B syndrome. J Pract Diabetol (Chin) 2014;10:10–11.

    Google Scholar 

  33. Jiang L, Liu C, Wang WQ, et al. Leprechaunism: an inherited insulin resistance syndrome caused by the defect of insulin receptor. Chin J Intern Med 2006;45:730–733.

    CAS  Google Scholar 

  34. Reaven GM. Role of insulin resistance in human disease. Diabetes 1988;37:1595–1607.

    Article  CAS  PubMed  Google Scholar 

  35. Reaven GM, Brand RJ, Chen YD, et al. Insulin resistance and insulin secretion are determinants of oral glucose tolerance in normal individuals. Diabetes 1993;42:1324–1332.

    Article  CAS  PubMed  Google Scholar 

  36. Catenacci VA, Pan Z, Ostendorf D, et al. A randomized pilot study comparing zero-calorie alternate-day fasting to daily caloric restriction in adults with obesity. Obesity 2016;24:1874–1883.

    Article  CAS  PubMed  Google Scholar 

  37. Batterham RL, Cummings DE. Mechanisms of diabetes improvement following bariatric/metabolic surgery. Diabetes Care 2016;39:893–901.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Akter R, Nessa A, Sarker D, et al. Effect of obesity on hemoglobin concentration. Mymens Med J 2017;26:230–234.

    CAS  Google Scholar 

  39. Liu YZ, Liu ZQ, Zhou HH. Progress in agonists and antagonists of peroxisome proliferator-activated receptorγ. Chin J Clin Pharm (Chin) 2007;23:308–310.

    CAS  Google Scholar 

  40. Yu SY, Kwon YI, Lee C, et al. Antidiabetic effect of chitosan oligosaccharide (GO2KA1) is mediated via inhibition of intestinal alpha-glucosidase and glucose transporters and PPARγ expression. Biofactors 2017;43:90–99.

    Article  CAS  PubMed  Google Scholar 

  41. Razny U, Goralska J, Zdzienicka A, et al. Relation of the protein glycation, oxidation and nitration to the osteocalcin level in obese subjects. Acta Biochim Polon 2017;64:415–422.

    Article  CAS  PubMed  Google Scholar 

  42. Ohn JH, Kwak SH, Cho YM, et al. 10-year trajectory of β-cell function and insulin sensitivity in the development of type 2 diabetes: a community-based prospective cohort study. Lancet Diabetes Endocrinol 2016;4:27–34.

    Article  CAS  PubMed  Google Scholar 

  43. Chruvattil R, Banerjee S, Nath S, et al. Dexamethasone alters the appetite regulation via induction of hypothalamic insulin resistance in rat brain. Mol Neurobiol 2017;54:7483–7496.

    Article  CAS  PubMed  Google Scholar 

  44. Schultes B, Panknin AK, Hallschmid M, et al. Glycemic increase induced by intravenous glucose infusion fails to affect hunger, appetite, or satiety following breakfast in healthy men. Appetite 2016;105:562–566.

    Article  PubMed  Google Scholar 

  45. Caminiti C, Armeno M, Mazza CS. Waist-to-height ratio as a marker of low-grade inflammation in obese children and adolescents. J Pediatr Endocrinol Metabol 2016;29:543–551.

    Article  CAS  Google Scholar 

  46. Razny U, Goralska J, Zdzienicka A, et al. Relation of the protein glycation, oxidation and nitration to the osteocalcin level in obese subjects. Acta Biochim Polon 2017;64:415–422.

    Article  CAS  PubMed  Google Scholar 

  47. Vivot K, Langlois A, Bietiger W, et al. Pro-inflammatory and prooxidant status of pancreatic islet in vitro is controlled by TLR-4 and HO-1 pathways. PLoS One 2014;9:e107656.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Taylorfishwick DA, Weaver J, Glenn L, et al. Selective inhibition of 12-lipoxygenase protects islets and beta cells from inflammatory cytokine-mediated beta cell dysfunction. Diabetologia 2015;58:549–557.

    Article  CAS  Google Scholar 

  49. Lancet. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998;352:837–853.

    Google Scholar 

  50. Gerstein C, Miller M, Byington R, et al. The action to control cardiovascular risk in diabetes study group. Effects of intensive glucose lowering in type 2 diabetes. New Eng J Med 2008;358:2545–2559.

    Article  CAS  PubMed  Google Scholar 

  51. Group AS, Gerstein HC, Miller ME, et al. Long-term effects of intensive glucose lowering on cardiovascular outcomes. New Eng J Med 2011;364:818–828.

    Article  Google Scholar 

  52. Duckworth W, Abraira C, Moritz T. Glucose control and vascular complications in veterans with type 2 diabetes. J Vasc Surg 2009;49:129–139.

    Article  Google Scholar 

  53. Jay S, Richard B, Robert B, et al. Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA diabetes trials: a position statement of the American Diabetes Association and a scientific statement of the American College of Cardiology Foundation and the American Heart Association. Diabetes Care 2009;32:187–192.

    Article  Google Scholar 

  54. Mearns ES, Saulsberry WJ, White CM, et al. Efficacy and safety of antihyperglycaemic drug regimens added to metformin and sulphonylurea therapy in type 2 diabetes: a network metaanalysis. Diabet Med 2015;32:1530–1540.

    Article  CAS  PubMed  Google Scholar 

  55. Vaccaro O, Masulli M, Nicolucci A, et al. Effects on the incidence of cardiovascular events of the addition of pioglitazone versus sulfonylureas in patients with type 2 diabetes inadequately controlled with metformin (TOSCA. IT): a randomised, multicentre trial. Lancet Diabetes Endocrinol 2017;5:887–897.

    Article  PubMed  Google Scholar 

  56. Heng XP, Yang LQ, Chen ML, et al. Paradox of using intensive lowering of blood glucose in diabetics and strategies to overcome it and decrease cardiovascular risks. Chin J Integr Med 2015;21:425–434. 62.

    Article  CAS  Google Scholar 

  57. Musso G, Cassader M, Paschetta E, et al. Thiazolidinediones and advanced liver fibrosis in nonalcoholic steatohepatitis: a meta-analysis. JAMA Intern Med 2017;177:633–640.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Shyangdan D, Clar C, Ghouri N, et al. Insulin sensitisers in the treatment of non-alcoholic fatty liver disease: a systematic review. Health Technol Assessm 2011;15:1–11.

    Article  CAS  Google Scholar 

  59. Huang R, Wang ZR, Sun Y, et al. Mechanism of Nampt gene expression regulation. Hereditas 2012;34:1561–1569.

    CAS  PubMed  Google Scholar 

  60. Shi XQ, Hua XL, Wen GM. In vitro rapid culture system to induce the adipogenic differentiation of rat bone marrow mesenchymal stem cells. Chin J Tissue Engin Res (Chin) 2013;17:3430–3436.

    Google Scholar 

  61. Hou YL, Ji H, Rong HQ. Effects of thiazolidinediones on bone metabolism. Chin J Osteopor Bone Miner Res (Chin) 2009;2:189–193.

    Google Scholar 

  62. Schwartz AV, Chen H, Ambrosius WT, et al. Effects of TZD use and discontinuation on fracture rates in ACCORD bone study. J Clin Endocrinol Metabol 2015;100:4059–4066.

    Article  CAS  Google Scholar 

  63. Koffert JP, Mikkola K, Virtanen KA, et al. Metformin treatment significantly enhances intestinal glucose uptake in patients with type 2 diabetes: results from a randomized clinical trial. Diabetes Res Clin Pract 2017;131:208–216.

    Article  CAS  PubMed  Google Scholar 

  64. Loh RKC, Formosa MF, Eikelis N, et al. Pioglitazone reduces cold-induced brown fat glucose uptake despite induction of browning in cultured human adipocytes: a randomised, controlled trial in humans. Diabetologia 2018;61:220–230.

    Article  CAS  PubMed  Google Scholar 

  65. Fitchett D, Zinman B, Wanner C, et al. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME® trial. Eur Heart J 2016;37:1526–1534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fitchett D, Butler J, van PDB, et al. Effects of empagliflozin on risk for cardiovascular death and heart failure hospitalization across the spectrum of heart failure risk in the EMPA-REG OUTCOME® trial. Eur Heart J 2018;39:363–370.

    Article  CAS  PubMed  Google Scholar 

  67. Wanner C, Lachin JM, Inzucchi SE, et al. Empagliflozin and clinical outcomes in patients with type 2 diabetes, established cardiovascular disease and chronic kidney disease. Circulation 2018;137:119–129.

    Article  CAS  PubMed  Google Scholar 

  68. Filippas-Ntekouan S, Filippatos TD, Elisaf MS. SGLT2 inhibitors: are they safe? Postgrad Med 2017;10:1–11.

    Google Scholar 

  69. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998;352:854–865.

    Article  Google Scholar 

  70. Hong J, Zhang Y, Lai S, et al. Effects of metformin versus glipizide on cardiovascular outcomes in patients with type 2 diabetes and coronary artery disease. Diabetes Care 2014;37:19–20.

    Article  CAS  Google Scholar 

  71. Mizuno Y, Suzuki T, Nakagawa A, et al. Pharmacological strategies to counteract antipsychotic-induced weight gain and metabolic adverse effects in schizophrenia: a systematic review and meta-analysis. Schizophren Bull 2014;40:1385–1403.

    Article  Google Scholar 

  72. Anabtawi A, Miles JM. Metformin: nonglycemic effects and potential novel indications. Endocr Pract 2016;22:999–1007.

    Article  PubMed  Google Scholar 

  73. Carlson MD, Ip J, Messenger J, et al. A new pacemaker algorithm for the treatment of atrial fibrillation: results of the Atrial Dynamic Overdrive Pacing Trial (ADOPT). J Am Coll Cardiol 2003;42:627–633.

    Article  PubMed  Google Scholar 

  74. Cryer DR, Nicholas SP, Henry DH, et al. Comparative outcomes study of metformin intervention versus conventional approach the COSMIC approach study. Diabetes Care 2005;28:539–543.

    Article  CAS  PubMed  Google Scholar 

  75. Batterham RL, Cummings DE. Mechanisms of diabetes improvement following bariatric/metabolic surgery. Diabetes Care 2016;39:893–901.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Marcus MD, Wilfley DE, El GL, et al. Weight change in the management of youth-onset type 2 diabetes: the TODAY clinical trial experience. Pediatr Obes 2017;12:337–345.

    Article  CAS  PubMed  Google Scholar 

  77. Gow ML, Baur LA, Johnson NA, et al. Reversal of type 2 diabetes in youth who adhere to a very-low-energy diet: a pilot study. Diabetologia 2017;60:406–415.

    Article  CAS  PubMed  Google Scholar 

  78. Li G, Zhang P, Wang J, et al. Cardiovascular mortality, all-cause mortality, and diabetes incidence after lifestyle intervention for people with impaired glucose tolerance in the Da Qing Diabetes Prevention Study: a 23-year follow-up study. Lancet Diabetes Endocrinol 2014;2:474–480.

    Article  PubMed  Google Scholar 

  79. Chen Y, Wang J, An Y, et al. Effect of lifestyle interventions on reduction of cardiovascular disease events and its mortality in pre-diabetic patients: long-term follow-up of Da Qing Diabetes Prevention Study. Chin J Intern Med (Chin) 2015;54:13–17.

    CAS  Google Scholar 

  80. Villareal DT, Banks MR, Patterson BW, et al. Weight loss therapy improves pancreatic endocrine function in obese older adults. Obesity 2008;16:1349–1354.

    Article  CAS  PubMed  Google Scholar 

  81. Guo J. Research progress on prevention and treatment of glucolipid metabolic disease with integrated traditional Chinese and Western medicine. Chin J Integr Med 2017;23:403–409.

    Article  CAS  PubMed  Google Scholar 

  82. Yang LQ, Li L, Heng XP, et al. Effects of Dangua Recipe on inflammatory markers and endothelial cell functions in diabetic rats with arteriosclerosis. Chin J Integr Tradit West Med (Chin) 2017;37:692–698.

    Google Scholar 

  83. Heng XP, Li L, Huang SP, et al. Effects of Dan Guafang on glycolipid metabolism and vcam-1 and its mRNA expression level in ApoE mice with diabetes mellitus. Chin J Integr Tradit West Med (Chin) 2014;34:1086–1095.

    Google Scholar 

  84. Lan YL, Li L, Heng XP, et al. Effect of Dangua Recipe on hepatic adiponectin receptor 2 expression in diabetic apolipoprotein E knockout mice. Chin J Integr Tradit West Med (Chin) 2016;36:1097–1102.

    Google Scholar 

  85. Heng XP, Chen KJ, Hong ZF, et al. Glucose endothelial cytotoxicity and protection of Dan Gua-Fang, a Chinese herb prescription in HUVEC in hyperglycemia medium. J Diabetes its Complicat 2009;23:297–303.

    Article  Google Scholar 

  86. Heng XP, Chen KJ, Hong ZF, et al. Anticolchicine cytotoxicity enhanced by Dan Gua-Fang, a Chinese herb prescription in ECV304 in mediums. Chin J Integr Med 2011;17:126–133.

    Article  PubMed  Google Scholar 

  87. Chen YC, Li L, Heng XP, et al. Effect of Dangua Recipe on expression levels of caspase-3 protein, Bcl-2 and Bax mRNA in brain tissue of ApoE-/-diabetes model mice. Chin J Integr Tradit West Med (Chin) 2017;37:1476–1481.

    Google Scholar 

  88. Heng XP, Chen KJ, Hong ZF, et al. Toxicity features of high glucose on endothelial cell cycle and protection by Dan Gua Fang in ECV-304 in high glucose medium. Chin J Integr Med 2013;19:596–602.

    Article  CAS  PubMed  Google Scholar 

  89. Chen S, Feng CY, Hu YH, et al. The expression on diabetic rat retina VCAM-1 level and the intervention of Quyu Huatan Recipe. J Fujian Coll Tradit Chin Med (Chin) 2013;23:20–23.

    CAS  Google Scholar 

  90. Weng L, Heng XP, Gong YR, et al. Dangua Humai Oral Liquid in the treatment of 50 cases of lower limb peripheral arterial disease. J Fujian Coll Tradit Chin Med (Chin) 2017;48:3–5.

    Google Scholar 

  91. Wang ZT, Heng XP, Chen YC, et al. Study on the effects of Dan Gua Formula on the rats′ cardiovascular using the isolated heart perfusion operation. Chin J Tradit Chin Med Pharm (Chin) 2017;32:3721–3725.

    CAS  Google Scholar 

  92. Zou PP, Li L, Heng XP, et al. Influence of Dangua Recipe on isolated heart of mice with diabetes mellitus underwent myocardial ischemia caused by pituitriin. Liaoning J Tradit Chin Med (Chin) 2017;44:1300–1303.

    Google Scholar 

  93. Lan YL, Huang XP, Heng XP, et al. Dan-gua Fang improves glycolipid metabolic disorders by promoting hepatic adenosine 5′-monophosphate activated protein kinase expression in diabetic Goto-Kakizaki rats. Chin J Integr Med 2015;21:188–195.

    Article  PubMed  Google Scholar 

  94. Lan YL, Huang SP, Heng XP, et al. Influence of Dangua Formula on blood glucose, body weight and food intake in GKrats with diabetes-atherosclerosis rat. Chin Arch Tradit Chin Med (Chin) 2012;30:1296–1299.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Heng XP conducted the main research work and wrote the article; Li XJ served on advisory and reviewed the article; Li L, Yang LQ, Wang ZT and Huang SP helped for data and preliminary work.

Corresponding author

Correspondence to Xian-pei Heng.

Additional information

Conflict of Interest

No potential conflicts of interest relevant to this article were reported.

Supported by the National Natural Science Foundation of China (No. 81473550, 81603508, 81873213), the Natural Science Foundation of Fujian Province (No. 2017J01213, 2016J0146), and the Innovation Fund of Medical Science of Fujian Province (No. 2017-CX-42), China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heng, Xp., Li, Xj., Li, L. et al. Therapy to Obese Type 2 Diabetes Mellitus: How Far Will We Go Down the Wrong Road?. Chin. J. Integr. Med. 26, 62–71 (2020). https://doi.org/10.1007/s11655-018-3053-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-018-3053-8

Keywords

Navigation