Skip to main content

Advertisement

Log in

Effects of Acupuncture on Alzheimer’s Disease: Evidence from Neuroimaging Studies

  • Review
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

As the worldwide population ages, the prevalence of Alzheimer's disease (AD) increases. However, the results of promising medications have been unsatisfactory. Chinese acupuncture has a long history of treating dementia, but lack of evidence from well-designed randomized controlled trials that validate its efficacy and safety, as well as its lack of clear underlying mechanisms, contribute to its limited application in clinical practice. In recent years, brain imaging technologies, such as functional magnetic resonance imaging and positron emission tomography, have been used to assess brain responses to acupuncture in a dynamic, visual, and objective way. These techniques are frequently used to explore neurological mechanisms of responses to acupuncture in AD and provide neuroimaging evidence as well as starting points to elucidate the possible mechanisms. This review summarizes the existing brain imaging evidence that explains the effects of acupuncture for AD and analyzes brain responses to acupuncture at cognitive-related acupoints [Baihui (GV 20), Shenmen (HT 7), Zusanli (ST 36), Neiguan (PC 6), and Taixi (KI 3)] from perspectives of acupoint specificity and acupoint combinations. Key issues and directions to consider in future studies are also put forward. This review should deepen our understanding of how brain imaging studies can be used to explore the underlying mechanisms of acupuncture in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scheltens P, Blennow K, Breteler MM, et al. Alzheimer's disease. Lancet 2016;388:505–517.

    Article  CAS  PubMed  Google Scholar 

  2. Hane FT, Lee BY, Leonenko Z. Recent progress in Alzheimer's disease research. Part 1: Pathology. J Alzheimers Dis 2017;57:1–28.

    Article  PubMed  Google Scholar 

  3. Alzheimer's Association. 2015 Alzheimer's disease facts and figures. Alzheimers Dement 2015;11:332–384.

  4. Birks J. Cholinesterase inhibitors for Alzheimer's disease. Cochrane Database Syst Rev 2006;Cd005593.

    Google Scholar 

  5. Bartus RT, Dean RL, 3rd, Beer B, et al. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982;217:408–414.

    Article  CAS  PubMed  Google Scholar 

  6. Kaduszkiewicz H, Zimmermann T, Beck-Bornholdt HP, et al. Cholinesterase inhibitors for patients with Alzheimer's disease: systematic review of randomised clinical trials. BMJ 2005;331:321–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lanctot KL, Herrmann N, Yau KK, et al. Efficacy and safety of cholinesterase inhibitors in Alzheimer's disease: a meta-analysis. CMAJ 2003;169:557–564.

    PubMed  PubMed Central  Google Scholar 

  8. Tricco AC, Soobiah C, Berliner S, et al. Efficacy and safety of cognitive enhancers for patients with mild cognitive impairment: a systematic review and meta-analysis. CMAJ 2013;185:1393–1401.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Witt CM, Pach D, Brinkhaus B, et al. Safety of acupuncture: results of a prospective observational study with 229, 230 patients and introduction of a medical information and consent form. Forsch Komplementmed 2009;16:91–97.

    PubMed  Google Scholar 

  10. Liu Z, Liu Y, Xu H, et al. Effect of electroacupuncture on urinary leakage among women with stress urinary incontinence: a randomized clinical trial. JAMA 2017;317:2493–2501.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liu Z, Yan S, Wu J, et al. Acupuncture for chronic severe functional constipation: a randomized trial. Ann Intern Med 2016;165:761–769.

    PubMed  Google Scholar 

  12. Zhao L, Chen J, Li Y, et al. The long-term effect of acupuncture for migraine prophylaxis: a randomized clinical trial. JAMA Intern Med 2017;177:508–515.

    Article  PubMed  Google Scholar 

  13. Zhou S, Dong L, He Y, et al. Acupuncture plus herbal medicine for Alzheimer's disease: a systematic review and meta-analysis. Am J Chin Med 2017;45:1327–1344.

    Article  PubMed  Google Scholar 

  14. Zhou J, Peng W, Xu M, et al. The effectiveness and safety of acupuncture for patients with Alzheimer disease: a systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 2015;94e933.

    Google Scholar 

  15. Deng M, Wang XF. An updated meta-analysis of the efficacy and safety of acupuncture treatment for vascular cognitive impairment without dementia. Curr Neurovasc Res 2016;13:230–238.

    Article  Google Scholar 

  16. Cho ZH, Hwang SC, Wong EK, et al. Neural substrates, experimental evidences and functional hypothesis of acupuncture mechanisms. Acta Neurol Scand 2006;113:370–377.

    Article  CAS  PubMed  Google Scholar 

  17. Cabioglu MT, Cetin BE. Acupuncture and immunomodulation. Am J Chin Med 2008;36:25–36.

    Article  CAS  PubMed  Google Scholar 

  18. Cagnie B, Dewitte V, Barbe T, et al. Physiologic effects of dry needling. Curr Pain Headache Rep 2013;17:348.

    Article  PubMed  Google Scholar 

  19. He T, Zhu W, Du SQ, et al. Neural mechanisms of acupuncture as revealed by fMRI studies. Auton Neurosci 2015;190:1–9.

    Article  PubMed  Google Scholar 

  20. Litscher G. Bioengineering assessment of acupuncture. part 4: functional magnetic resonance imaging. Crit Rev Biomed Eng 2006;34:327–345.

    Article  PubMed  Google Scholar 

  21. Campbell A. Point specificity of acupuncture in the light of recent clinical and imaging studies. Acupunct Med 2006;24:118–122.

    Article  PubMed  Google Scholar 

  22. Barthel H, Seibyl J, Sabri O. The role of positron emission tomography imaging in understanding Alzheimer's disease. Expert Rev Neurother 2015;15:395–406.

    Article  CAS  PubMed  Google Scholar 

  23. Shmuel A, Augath M, Oeltermann A, et al. Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 2006;9:569–577.

    Article  CAS  PubMed  Google Scholar 

  24. Gusnard DA, Raichle ME, Raichle ME. Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2001;2:685–694.

    Article  CAS  PubMed  Google Scholar 

  25. Dennis EL, Thompson PM. Functional brain connectivity using fMRI in aging and Alzheimer's disease. Neuropsychol Rev 2014;24:49–62.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xing JJ, Zeng BY, Li J, et al. Acupuncture point specificity. Int Rev Neurobiol 2013;111:49–65.

    Article  PubMed  Google Scholar 

  27. Zhou W, Benharash P. Effects and mechanisms of acupuncture based on the principle of meridians. J Acupunct Meridian Stud 2014;7:190–193.

    Article  PubMed  Google Scholar 

  28. Hu KM, Wang CP, Xie HJ, et al. Observation on activating effectiveness of acupuncture at acupoints and non-acupoints on different brain regions. Chin Acupunct Moxibust (Chin) 2006;26:205–207.

    Google Scholar 

  29. Liu S, Li M, Tang W, et al. An fMRI study of the effects on normal language areas when acupuncturing the Tongli (HT 5) and Xuanzhong (GB 39) acupoints. J Int Med Res 2017;300060517720344.

    Google Scholar 

  30. Liu H, Xu JY, Li L, et al. fMRI evidence of acupoints specificity in two adjacent acupoints. Evid Based Complement Alternat Med 2013;2013:932581.

    PubMed  PubMed Central  Google Scholar 

  31. Liu P, Qin W, Zhang Y, et al. Combining spatial and temporal information to explore function-guide action of acupuncture using fMRI. J Magn Reson Imaging 2009;30:41–46.

    Article  PubMed  Google Scholar 

  32. Li L, Qin W, Bai L, et al. Exploring vision-related acupuncture point specificity with multivoxel pattern analysis. Magn Reson Imaging 2010;28:380–387.

    Article  PubMed  Google Scholar 

  33. Cao Y, Zhang LW, Wang J, et al. Mechanisms of acupuncture effect on Alzheimer's disease in animal-based researches. Curr Top Med Chem 2016;16:574–578.

    Article  CAS  PubMed  Google Scholar 

  34. Park S, Lee JH, Yang EJ. Effects of acupuncture on Alzheimer's disease in animal-based research. Evid Based Complement Alternat Med 2017;2017:6512520.

    PubMed  PubMed Central  Google Scholar 

  35. Zhou L, Zhang YL, Hou XB, et al. Senile dementia: differentiation of syndromes according to meridians based on the theory of "cerebral collaterals injury by toxin". Chin Acupunct Moxibust (Chin) 2012;32:1031–1034.

    Google Scholar 

  36. Feng S, Ren Y, Fan S, et al. Discovery of acupoints and combinations with potential to treat vascular dementia: a data mining analysis. Evid Based Complement Alternat Med 2015;2015:310591.

    PubMed  PubMed Central  Google Scholar 

  37. Li W, Kong LH, Wang H, et al. High-frequency electroacupuncture evidently reinforces hippocampal synaptic transmission in Alzheimer's disease rats. Neural Regen Res 2016;11:801–806.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhu SX, Sun GJ. Effects of electroacupuncture on learning and memory ability and glial cells of the hippocampus in the rat of Alzheimer disease. Chin Acupunct Moxibust (Chin) 2009;29:133–136.

    Google Scholar 

  39. Luo L, Sun GJ, Du YJ. Effect of "Kidney-reinforcing and Govenor Vessel-regulating" of Acupuncture plus moxibustion on mitochondrial dynamics-related proteins in hippocampal neurons of rats with Alzheimer's disease. Acupunct Res (Chin) 2015;40:270–274.

    Google Scholar 

  40. Guo HD, Zhu J, Tian JX,et al. Electroacupuncture improves memory and protects neurons by regulation of the autophagy pathway in a rat model of Alzheimer's disease. Acupunct Med 2016;34:449–456.

    Article  PubMed  Google Scholar 

  41. Guo HD, Tian JX, Zhu J, et al. Electroacupuncture suppressed neuronal apoptosis and improved cognitive impairment in the AD model rats possibly via downregulation of notch signaling pathway. Evid Based Complement Alternat Med 2015;2015:393569.

    PubMed  PubMed Central  Google Scholar 

  42. Calsolaro V, Edison P. Alterations in glucose metabolism in Alzheimer's disease. Recent Pat Endocr Metab Immune Drug Discov 2016;10:31–39.

    Article  CAS  PubMed  Google Scholar 

  43. Gibas KJ. The starving brain: overfed meets undernourished in the pathology of mild cognitive impairment (MCI) and Alzheimer's disease (AD). Neurochem Int 2017;110:57–68.

    Article  CAS  PubMed  Google Scholar 

  44. Lu Y, Ren J, Cui S, et al. Cerebral glucose metabolism assessment in rat models of Alzheimer's disease: an 18F-FDG-PET study. Am J Alzheimers Dis Other Demen 2016;31:333–340.

    Article  PubMed  Google Scholar 

  45. Cao J, Tang Y, Li Y, et al. Behavioral changes and hippocampus glucose metabolism in APP/PS1 transgenic mice via electro-acupuncture at Governor Vessel acupoints. Front Aging Neurosci 2017;9:5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Deng D, Duan G, Liao H, et al. Changes in regional brain homogeneity induced by electro-acupuncture stimulation at the baihui acupoint in healthy subjects: a functional magnetic resonance imaging study. J Altern Complement Med 2016;22:794–799.

    Article  PubMed  Google Scholar 

  47. Zang Y, Jiang T, Lu Y, et al. Regional homogeneity approach to fMRI data analysis. Neuroimage 2004;22:394–400.

    Article  PubMed  Google Scholar 

  48. Rule RR, Shimamura AP, Knight RT. Orbitofrontal cortex and dynamic filtering of emotional stimuli. Cogn Affect Behav Neurosci 2002;2:264–270.

    Article  PubMed  Google Scholar 

  49. Davis KD, Taylor KS, Hutchison WD, et al. Human anterior cingulate cortex neurons encode cognitive and emotional demands. J Neurosci 2005;25:8402–8406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioural correlates. Brain 2006;129:564–583.

    Article  PubMed  Google Scholar 

  51. Zheng Y, Qu S, Wang N, et al. Post-stimulation effect of electroacupuncture at Yintang (EX-HN3) and GV20 on cerebral functional regions in healthy volunteers: a resting functional MRI study. Acupunct Med 2012;30:307–315.

    Article  PubMed  Google Scholar 

  52. Zang YF, He Y, Zhu CZ, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 2007;29:83–91.

    Article  PubMed  Google Scholar 

  53. Duman RS. Novel therapeutic approaches beyond the serotonin receptor. Biol Psychiatry 1998;44:324–335.

    Article  CAS  PubMed  Google Scholar 

  54. Killgore WD, Yurgelun-Todd DA. Activation of the amygdala and anterior cingulate during nonconscious processing of sad versus happy faces. Neuroimage 2004;21:1215–1223.

    Article  PubMed  Google Scholar 

  55. Smith KA, Ploghaus A, Cowen PJ, et al. Cerebellar responses during anticipation of noxious stimuli in subjects recovered from depression. Functional magnetic resonance imaging study. Br J Psychiatry 2002;181:411–415.

    CAS  PubMed  Google Scholar 

  56. Gao JH, Parsons LM, Bower JM, et al. Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science 1996;272:545–547.

    Article  CAS  PubMed  Google Scholar 

  57. Jacobs HIL, Hopkins DA, Mayrhofer HC,et al. The cerebellum in Alzheimer's disease: evaluating its role in cognitive decline. Brain 2018;141:37–47.

    Article  PubMed  Google Scholar 

  58. Zhang G, Qu S, Zheng Y, et al. Key regions of the cerebral network are altered after electroacupuncture at the Baihui (GV 20) and Yintang acupuncture points in healthy volunteers: an analysis based on resting fcMRI. Acupunct Med 2013;31:383–388.

    Article  PubMed  Google Scholar 

  59. Greicius MD, Srivastava G, Reiss AL, et al. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A 2004;101:4637–4642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sorg C, Riedl V, Muhlau M, et al. Selective changes of resting-state networks in individuals at risk for Alzheimer's disease. Proc Natl Acad Sci U S A 2007;104:18760–18765.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhou YL, Han HY, Jia JP. Correlation analysis on changes between cognitive ability and brain fMRI after acupoint thread embedding in Alzheimer's disease patients. Chin J Integr Tradit Chin West Med (Chin) 2008;28:689–693.

    CAS  Google Scholar 

  62. Zhou Y, Jin J. Effect of acupuncture given at the HT7, ST 36, ST 40 and KI3 acupoints on various parts of the brains of Alzheimer' s disease patients. Acupunct Electrother Res 2008;33:9–17.

    Article  PubMed  Google Scholar 

  63. Chen SJ, Liu B, Fu WB, et al. A fMRI observation on different cererbral regions activated by acupuncture of Shenmen (HT 7) and Yanglao (SI 6). Acupunct Res (Chin) 2008;33:267–271.

    Google Scholar 

  64. Dukart J, Mueller K, Villringer A, et al. Relationship between imaging biomarkers, age, progression and symptom severity in Alzheimer's disease. Neuroimage Clin 2013;3:84–94.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Roy K, Pepin LC, Philiossaint M, et al. Regional fluorodeoxyglucose metabolism and instrumental activities of daily living across the Alzheimer's disease spectrum. J Alzheimers Dis 2014;42:291–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lai X, Ren J, Lu Y, et al. Effects of acupuncture at HT7 on glucose metabolism in a rat model of Alzheimer's disease: an 18F-FDG-PET study. Acupunct Med 2016;34:215–222.

    Article  PubMed  Google Scholar 

  67. Di Marco LY, Venneri A, Farkas E, et al. Vascular dysfunction in the pathogenesis of Alzheimer's disease—A review of endotheliummediated mechanisms and ensuing vicious circles. Neurobiol Dis 2015;82:593–606.

    Article  CAS  PubMed  Google Scholar 

  68. Wang Z, Liang P, Zhao Z, et al. Acupuncture modulates resting state hippocampal functional connectivity in Alzheimer disease. PLoS One 2014;9:e91160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Uchida S, Kagitani F, Suzuki A, et al. Effect of acupuncture-like stimulation on cortical cerebral blood flow in anesthetized rats. Jpn J Physiol 2000;50:495–507.

    Article  CAS  PubMed  Google Scholar 

  70. Gu W, Jin XX, Zhang YJ, et al. Clinical observation of Alzheimer's disease treated with acupuncture. Chin Acupunct Moxibust (Chin) 2014;34:1156–1160.

    Google Scholar 

  71. Liu G, Yuan LX. Clinical observation on acupuncture combined with music for treatment of Alzheimer disease. Chin Acupunct Moxibust (Chin) 2005;25:390–392.

    CAS  Google Scholar 

  72. Nierhaus T, Pach D, Huang W, et al. Differential cerebral response to somatosensory stimulation of an acupuncture point vs. two nonacupuncture points measured with EEG and fMRI. Front Hum Neurosci 2015;9:74.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Chen X, Chen J, Liu B. Central modulating mechanism of ST36 (Zusanli) acupuncturing on amplitude of low-frequency fluctuation in resting-state. Chin J Integr Tradit Chin West Med (Chin) 2010;30:1030–1035.

    Google Scholar 

  74. Feng Y, Bai L, Ren Y, et al. Investigation of the large-scale functional brain networks modulated by acupuncture. Magn Reson Imaging 2011;29:958–965.

    Article  PubMed  Google Scholar 

  75. Lu Y, Huang Y, Tang C, et al. Brain areas involved in the acupuncture treatment of AD model rats: a PET study. BMC Complement Altern Med 2014;14:178.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Lu YJ, Cai XW, Zhang GF, et al. Long-term acupuncture treatment has a multi-targeting regulation on multiple brain regions in rats with Alzheimer's disease: a positron emission tomography study. Neural Regen Res 2017;12:1159–1165.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zilberter Y, Zilberter M. The vicious circle of hypometabolism in neurodegenerative diseases: ways and mechanisms of metabolic correction. J Neurosci Res 2017;95:2217–2235.

    Article  CAS  PubMed  Google Scholar 

  78. Nishimura T, Hashikawa K, Fukuyama H, et al. Decreased cerebral blood flow and prognosis of Alzheimer's disease: a multicenter HMPAO-SPECT study. Ann Nucl Med 2007;21:15–23.

    Article  PubMed  Google Scholar 

  79. Daulatzai MA. Olfactory dysfunction: its early temporal relationship and neural correlates in the pathogenesis of Alzheimer's disease. J Neural Transm (Vienna) 2015;122:1475–1497.

    Article  CAS  Google Scholar 

  80. Lafaille-Magnan ME, Poirier J, Etienne P, et al. Odor identification as a biomarker of preclinical AD in older adults at risk. Neurology 2017;89:327–335.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kuo MF, Nitsche MA. Exploring prefrontal cortex functions in healthy humans by transcranial electrical stimulation. Neurosci Bull 2015;31:198–206.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wang Q, Liang D, Wang F, et al. Efficacy of electroacupuncture pretreatment for myocardial injury in patients undergoing percutaneous coronary intervention: a randomized clinical trial with a 2-year follow-up. Int J Cardiol 2015;194:28–35.

    Article  PubMed  Google Scholar 

  83. Alizadeh R, Esmaeili S, Shoar S, et al. Acupuncture in preventing postoperative nausea and vomiting: efficacy of two acupuncture points versus a single one. J Acupunct Meridian Stud 2014;7:71–75.

    Article  PubMed  Google Scholar 

  84. Errington-Evans N. Randomised controlled trial on the use of acupuncture in adults with chronic, non-responding anxiety symptoms. Acupunct Med 2015;33:98–102.

    Article  PubMed  Google Scholar 

  85. Zhang G, Yin H, Zhou YL, et al. Capturing amplitude changes of low-frequency fluctuations in functional magnetic resonance imaging signal: a pilot acupuncture study on Neiguan (PC 6). J Altern Complement Med 2012;18:387–393.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Fu P, Jia JP, Zhu J, et al. Effects of acupuncture at Neiguan (PC 6) on human brain functional imaging in different functional states. Chin Acupunct Moxibust (Chin) 2005;25:784–786.

    Google Scholar 

  87. Wu J, Wang J, Zhang J. Theoretic basis on the same therapeutic program for different degenerative brain diseases in terms of the Governor Vessel: Alzheimer's disease and Parkinson's disease. Chin Acupunct Moxibust (Chin) 2015;35:489–492.

    Google Scholar 

  88. Zhang Y, Lin C, Zhang L, et al. Cognitive improvement during treatment for mild Alzheimer's disease with a Chinese herbal formula: a randomized controlled trial. PLoS One 2015;10:e0130353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Liu P, Kong M, Liu S, et al. Effect of reinforcing Kidney-essence, removing phlegm, and promoting mental therapy on treating Alzheimer's disease. J Tradit Chin Med 2013;33:449–454.

    Article  PubMed  Google Scholar 

  90. Leung AW, Lam LC, Kwan AK, et al. Electroacupuncture for older adults with mild cognitive impairment: study protocol for a randomized controlled trial. Trials 2015;16:232.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Chen S, Xu M, Li H, et al. Acupuncture at the Taixi (KI3) acupoint activates cerebral neurons in elderly patients with mild cognitive impairment. Neural Regen Res 2014;9:1163–1168.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Liu Z, Wei W, Bai L, et al. Exploring the patterns of acupuncture on mild cognitive impairment patients using regional homogeneity. PLoS One 2014;9:e99335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Feng Y, Bai L, Ren Y, et al. FMRI connectivity analysis of acupuncture effects on the whole brain network in mild cognitive impairment patients. Magn Reson Imaging 2012;30:672–682.

    Article  PubMed  Google Scholar 

  94. Jia B, Liu Z. The effects of acupuncture at real or sham acupoints on the intrinsic brain activity in mild cognitive impairment patients. Evid Based Complement Alternat Med 2015;2015:529675.

    PubMed  PubMed Central  Google Scholar 

  95. Su Q, Zhang JM, Li M. Application of functional magnetic resonance imaging in acupoint functional significance of encephalic region. Chin Acupunct Moxibust (Chin) 2014;34:517–520.

    Google Scholar 

  96. Ma YX, Ye XN, Liu CZ, et al. A clinical trial of acupuncture about time-varying treatment and points selection in primary dysmenorrhea. J Ethnopharmacol 2013;148:498–504.

    Article  PubMed  Google Scholar 

  97. Wang Z, Nie B, Li D, et al. Effect of acupuncture in mild cognitive impairment and Alzheimer disease: a functional MRI study. PLoS One 2012;7:e42730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Desikan RS, Cabral HJ, Hess CP, et al. Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer's disease. Brain 2009;132:2048–2057.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wang Z, Zhao C, Yu L, et al. Regional metabolic changes in the hippocampus and posterior cingulate area detected with 3-Tesla magnetic resonance spectroscopy in patients with mild cognitive impairment and Alzheimer disease. Acta Radiol 2009;50:312–319.

    Article  PubMed  Google Scholar 

  100. Li SJ, Li Z, Wu G, et al. Alzheimer disease: evaluation of a functional MR imaging index as a marker. Radiology 2002;225:253–259.

    Article  PubMed  Google Scholar 

  101. Wang L, Zang Y, He Y, et al. Changes in hippocampal connectivity in the early stages of Alzheimer's disease: evidence from resting state fMRI. Neuroimage 2006;31:496–504.

    Article  PubMed  Google Scholar 

  102. Wang Z, Liang P, Jia X, et al. Baseline and longitudinal patterns of hippocampal connectivity in mild cognitive impairment: evidence from resting state fMRI. J Neurol Sci 2011;309:79–85.

    Article  PubMed  Google Scholar 

  103. Goveas JS, Xie C, Ward BD, et al. Recovery of hippocampal network connectivity correlates with cognitive improvement in mild Alzheimer's disease patients treated with donepezil assessed by resting-state fMRI. J Magn Reson Imaging 2011;34:764–773.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Tan TT, Wang D, Huang JK, et al. Modulatory effects of acupuncture on brain networks in mild cognitive impairment patients. Neural Regen Res 2017;12:250–258.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Hu X, Wang T, Jin F. Alzheimer's disease and gut microbiota. Sci China Life Sci 2016;59:1006–1023.

    Article  CAS  PubMed  Google Scholar 

  106. Zhong ZP, Wu SS, Chen ZG, et al. Study on response of restingstate functional magnetic resonance imaging induced by abdominal acupuncture with invigorating the Kidney and nourishing marrow method. Chin Acupunct Moxibust (Chin) 2011;31:139–143.

    Google Scholar 

  107. Najem D, Bamji-Mirza M, Chang N, et al. Insulin resistance, neuroinflammation, and Alzheimer's disease. Rev Neurosci 2014;25:509–525.

    Article  CAS  PubMed  Google Scholar 

  108. Biessels GJ, Reagan LP. Hippocampal insulin resistance and cognitive dysfunction. Nat Rev Neurosci 2015;16:660–671.

    Article  CAS  PubMed  Google Scholar 

  109. Tups A, Benzler J, Sergi D, et al. Central regulation of glucose homeostasis. Compr Physiol 2017;7:741–764.

    Article  PubMed  Google Scholar 

  110. Zhang Y, Zhang Z, Wang H, et al. Neuroprotective effect of ginsenoside Rg1 prevents cognitive impairment induced by isoflurane anesthesia in aged rats via antioxidant, anti-inflammatory and anti-apoptotic effects mediated by the PI3K/AKT/GSK-3beta pathway. Mol Med Rep 2016;14:2778–2784.

    Article  CAS  PubMed  Google Scholar 

  111. Llorens-Martin M, Jurado J, Hernandez F, Avila J. GSK-3beta, a pivotal kinase in Alzheimer disease. Front Mol Neurosci 2014;7:46.

    PubMed  Google Scholar 

  112. Ma T. GSK3 in Alzheimer's disease: mind the isoforms. J Alzheimers Dis 2014;39:707–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yi JH, Baek SJ, Heo S, et al. Direct pharmacological Akt activation rescues Alzheimer's disease like memory impairments and aberrant synaptic plasticity. Neuropharmacology 2018;128:282–292.

    Article  CAS  PubMed  Google Scholar 

  114. Jo J, Whitcomb DJ, Olsen KM, et al. Abeta(1-42) inhibition of LTP is mediated by a signaling pathway involving caspase-3, Akt1 and GSK-3beta. Nat Neurosci 2011;14:545–547.

    Article  CAS  PubMed  Google Scholar 

  115. Lu L, Guo L, Gauba E, et al. Transient cerebral ischemia promotes brain mitochondrial dysfunction and exacerbates cognitive impairments in young 5xFAD mice. PLoS One 2015;10:e0144068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Okamoto Y, Yamamoto T, Kalaria RN, et al. Cerebral hypoperfusion accelerates cerebral amyloid angiopathy and promotes cortical microinfarcts. Acta Neuropathol 2012;123:381–394.

    Article  CAS  PubMed  Google Scholar 

  117. Leuzy A, Rodriguez-Vieitez E, Saint-Aubert L, et al. Longitudinal uncoupling of cerebral perfusion, glucose metabolism, and tau deposition in Alzheimer's disease. Alzheimers Dement 2018;14:652–663.

    Article  PubMed  Google Scholar 

  118. Bae CS, Song J. The role of glucagon-like peptide 1 (GLP1) in type 3 diabetes: GLP-1 controls insulin resistance, neuroinflammation and neurogenesis in the brain. Int J Mol Sci 2017;18:E2493.

    Article  CAS  PubMed  Google Scholar 

  119. Kim SN, Kim ST, Doo AR, et al. Phosphatidylinositol 3-kinase/Akt signaling pathway mediates acupuncture-induced dopaminergic neuron protection and motor function improvement in a mouse model of Parkinson's disease. Int J Neurosci 2011;121:562–569.

    Article  CAS  PubMed  Google Scholar 

  120. Wang Y, Kong L, Li W, et al. Effects and mechanisms of different frequencies of electroacupuncture for learning and memory ability of Alzheimer's rats. Chin Acupunct Moxibust (Chin) 2017;37:629–636.

    Google Scholar 

  121. Roubroeks JY, Smith RG. Epigenetics and DNA methylomic profiling in Alzheimer's disease and other neurodegenerative diseases. J Neurochem 2017;143:158–170.

    Article  CAS  PubMed  Google Scholar 

  122. Calsolaro V, Edison P. Neuroinflammation in Alzheimer's disease: current evidence and future directions. Alzheimers Dement 2016;12:719–732.

    Article  PubMed  Google Scholar 

  123. Tonnies E, Trushina E. Oxidative stress, synaptic dysfunction, and Alzheimer's disease. J Alzheimers Dis 2017;57:1105–1121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wong MW, Braidy N, Poljak A, et al. Dysregulation of lipids in Alzheimer's disease and their role as potential biomarkers. Alzheimers Dement 2017;13:810–827.

    Article  PubMed  Google Scholar 

  125. Yang J, Zeng F, Feng Y, et al. A PET-CT study on the specificity of acupoints through acupuncture treatment in migraine patients. BMC Complement Altern Med 2012;12:123.

    Article  PubMed  PubMed Central  Google Scholar 

  126. You Y, Bai L, Dai R, et al. Differential neural responses to acupuncture revealed by MEG using wavelet-based timefrequency analysis: a pilot study. Conf Proc IEEE Eng Med Biol Soc 2011;2011:7099–7102.

    Google Scholar 

  127. Feng Y, Bai L, Zhang W, et al. Investigation of acupoint specificity by whole brain functional connectivity analysis from fMRI data. Conf Proc IEEE Eng Med Biol Soc 2011;2011:2784–2787.

    Google Scholar 

  128. Yang M, Yang J, Zeng F, et al. Electroacupuncture stimulation at sub-specific acupoint and non-acupoint induced distinct brain glucose metabolism change in migraineurs: a PET-CT study. J Transl Med 2014;12:351.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Ma TT, Yu SY, Li Y, et al. Randomised clinical trial: an assessment of acupuncture on specific meridian or specific acupoint vs. sham acupuncture for treating functional dyspepsia. Aliment Pharmacol Ther 2012;35:552–561.

    Article  CAS  PubMed  Google Scholar 

  130. Tu WZ, Jiang SH, Zhang L, et al. Electro-acupuncture at Governor Vessel improves neurological function in rats with spinal cord injury. Chin J Integr Med 2017 [Epub ahead of print] DOI: 10.1007/s11655-017-2968-9.

    Google Scholar 

  131. Li Z, Hu YY, Zheng CY, et al. Rules of meridians and acupoints selection in treatment of Parkinson's disease based on data mining techniques. Chin J Integr Med 2018 [Epub ahead of print] DOI: 10.1007/s11655-017-2428-6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-hong Kong.

Additional information

Supported by National Natural Science Foundation of China (No. 81373741), Chinese Medicine and Integrated Medicine Research Projects (2017, No. 20) funded by Health and Family Planning Commission of Hubei Province (No. 24), Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion (2014, No. 8)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Cc., Ma, Cy., Wang, H. et al. Effects of Acupuncture on Alzheimer’s Disease: Evidence from Neuroimaging Studies. Chin. J. Integr. Med. 25, 631–640 (2019). https://doi.org/10.1007/s11655-018-2993-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-018-2993-3

Keywords

Navigation