Skip to main content
Log in

Purines Change at Acupoints along the Pericardium Meridian in Healthy and Myocardial Ischemic Rats

  • Acupuncture Research
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To quantify the purine concentrations of the acupoints along the pericardium and nonpericardium meridians under healthy and myocardial ischemia conditions to investigate the relationship between acupoint purine change and body functional status in rats.

Methods

A total of 70 rats underwent an operation for myocardial ischemia, while 40 of them survived. They were randomly assigned to the following 5 subgroups: Neiguan (PC 6), Quze (PC 3), Tianquan (PC 2), Quchi (LI 11), and Jianyu (LI 15). Simultaneously, another 40 healthy rats were also randomized into the same 5 subgroups as the control group. The tissue fluids at the acupoints were collected by microdialysis for 30 min. Subsequently, the concentration of adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), and adenosine (ADO) were quantified using the high-performance liquid chromatography method.

Results

Compared with the healthy group, the ADO at PC 6 (P=0.012), PC 3 (P=0.038), PC 2 (P=0.024), and LI 15 (P=0.042) obviously increased in the model group, while no significant difference was observed at LI 11 (P=0.201). However, ATP, ADP, and AMP manifested no significant changes in these areas, except for ATP at LI 15 (P=0.036).

Conclusions

Myocardial ischemia could induce an increase in ADO at acupoints of the upper arm and shoulder area, suggesting that the body functional status could affect the responsiveness of acupoints. The status of these acupoints could be pathogenically activated by disease, and distribution following some specific courses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen RX, Kang MF, Chen MR. Return of Qibo: on hypothesis of sensitization state of acupoints. Chin Acupunct Moxibust (Chin) 2011;31:134–138.

    Google Scholar 

  2. Zhu B. The plasticity of acupoint. Chin Acupunct Moxibust (Chin) 2015;35:1203–1208.

    Google Scholar 

  3. Chen RX, Xie DY. Discussion on acupoint sensitization theory. J Anhui Univ Chinese Med (Chin) 2016;35:50–51.

    CAS  Google Scholar 

  4. Cheng B, Shi H, Ji CF, Li J, Chen S, Jing X. Distribution of the activated acupoints after acute gastric mucosal injury in the rat. Acupunct Res (Chin) 2010;35:193–197.

    Google Scholar 

  5. Zhu B, ed. Systematic acupuncture: renaissance of surface medicine. Beijing: People’s Medical Publishing House;2015:109–112.

    Google Scholar 

  6. Goldman N, Chen M, Fujita T, Xu Q, Peng W, Liu W, et al. Adenosine A1 receptors mediate local anti–nociceptive effects of acupuncture. Nat Neurosci 2010;13:883–888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Takano T, Chen X, Luo F, Fujita T, Ren Z, Goldman N, et al. Traditional acupuncture triggers a local increase in adenosine in human subjects. J Pain 2012;13:1215–1223.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gao YH, Li CW, Wang JY, Tan LH, Duanmu CL, Jing XH, et al. Effect of electroacupuncture on the cervicospinal P2X7 receptor/fractalkine/CX3CR1 signaling pathway in a rat neckincision pain model. Purinergic Signal 2017;13:215–225.

    Article  CAS  PubMed  Google Scholar 

  9. Hu L, Wang L, Wei J, Ryszard G, Shen X, Wolfgang S. Heat induces adenosine triphosphate release from mast cells in vitro: a putative mechanism for moxibustion. J Tradit Chin Med 2015;35:323–328.

    Article  PubMed  Google Scholar 

  10. Wang L, Hu L, Grygorczyk R, Shen X, Schwarz W. Modulation of extracellular ATP content of mast cells and DRG neurons by irradiation: studies on underlying mechanism of low–levellaser therapy. Mediators Inflamm 2015;2015:630361.

    PubMed  PubMed Central  Google Scholar 

  11. Yao W, Yang H, Yin N, Ding G. Mast cell–nerve cell interaction at acupoint: modeling mechanotransduction pathway induced by acupuncture. Int J Biol Sci 2014;10:511–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fu SP, He SY, Xu B, Hu CJ, Lu SF, Shen WX, et al. Acupuncture promotes angiogenesis after myocardial ischemia through H3K9 acetylation regulation at VEGF gene. PLoS One 2014;9:e94604.

    Article  CAS  Google Scholar 

  13. Yu SG, Guo Y, eds. Experimental acupuncture. Shanghai: Shanghai Science and Technology Publishing House;2009:150–152.

    Google Scholar 

  14. Shen XY, Ding GH, Deng HP, Wei JZ, Zhao L, Zhou Y, et al. Analysis on pathological information of infrared radiation spectrums at acupuncture point Neiguan (PC 6) for patients with coronary heart disease. J Infrared Millimeter Waves (Chin) 2006;25:443–446.

    Google Scholar 

  15. Zhang WB, Tian YY, Zhu ZX, Xu RM. The distribution of transcutaneous CO2 emission and correlation with the points along the pericardium meridian. J Acupunct Merid Stud 2009;2:197–201.

    Article  Google Scholar 

  16. Xiu CY, Dong YQ, Zhu XX, Xu JS. Effects of electroacupuncturing points of pericardium meridian on hemodynamic parameters of volunteers with acute hypoxia. J Fujian Coll Tradit Chin Med (Chin) 2014;24:6–8.

    Google Scholar 

  17. Jou NT, Ma SX. Responses of nitric oxide–CGMP release in acupuncture point to electroacupuncture in human skin in vivo using dermal microdialysis. Microcirculation 2009;16:434–443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ma SX, Mayer E, Lee P, Li XY, Gao EZ. Transcutaneous electrical stimulation increased nitric oxide–cyclic GMP release biocaptured over skin surface of pericardium meridian and acupuncture points in humans. Acupunct Electrother Res 2015;40:73–86.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ma SX, Li XY, Smith BT, Jou NT. Changes in nitric oxide, cGMP, and nitrotyrosine concentrations over skin along the meridians in obese subjects. Obesity 2011;19:1560–1567.

    Article  CAS  PubMed  Google Scholar 

  20. Ma SX. Nitric oxide signaling molecules in acupoints: toward mechanisms of acupuncture. Chin J Integr Med 2017;23:812–815.

    Article  CAS  PubMed  Google Scholar 

  21. Tang Y, Yin HY, Rubini P, Illes P. Acupuncture–induced analgesia: a neurobiological basis in purinergic signaling. Neuroscientist 2016;22:563–578.

    Article  Google Scholar 

  22. Huang YH, Weng XH, Zhou ZQ. Extracellular ATP: effects, sources and fate. Progr Pysiol Sci (Chin) 1998;29:115–119.

    CAS  Google Scholar 

  23. He W, Wu M, Jing XH, Bai WZ, Zhu B, Yu XC. Entity of acupoint: kinetic changes of acupoints in histocytochemistry. Acupunct Res (Chin) 2015;35:1181–1186.

    Google Scholar 

  24. Li P, Pitsillides KF, Rendig SV, Pan HL, Longhurst JC. Reversal of reflex–induced myocardial ischemia by median nerve stimulation: a feline model of electroacupuncture. Circulation 1998;97:1186–1194.

    Article  CAS  PubMed  Google Scholar 

  25. Liu Q, Yang L, Li ZH. Projection and con–origin of the rat heart and point Neiguan nerve, and the neural transmitter property of the con–origin neurons. Acta Acad Med Shandong (Chin) 2004;42:99–102.

    Google Scholar 

  26. Liu JL, Chen SP, Gao YH. Role of the spinal cord in the improvement of performance of ischemic heart induced by electroacupuncture of "Neiguan"(PC 6)–"Jianshi"(PC 5). Acupuncture Res (Chin) 2005;30:155–158.

    Google Scholar 

  27. Liu X, Zhang Q, Han M, Du J. Intrapericardial capsaicin and bradykinin induce different cardiac–somatic and cardiovascular reflexes in rats. Auton Neurosci 2016;198:28–32.

    Article  CAS  PubMed  Google Scholar 

  28. Han M, Liu X, Du J. Modulatory effect of neurokinin–1 and non–N–methyl–D–aspartate receptors on cardiosomatic reflex in rat spinal cord. J Southern Med Univ (Chin) 2014;34:1728–1732.

    CAS  Google Scholar 

  29. Goldman N, Chandler–Militello D, Langevin HM, Nedergaard M, Takano T. Purine receptor mediated actin cytoskeleton remodeling of human fibroblasts. Cell Calcium 2013;53:297–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nagaoka S, Shinbara H, Okubo M, Kawakita T, Hino K, Sumiya E. Contributions of ADP and ATP to the increase in skeletal muscle blood flow after manual acupuncture stimulation in rats. Acupunct Med 2016;34:229–234.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We are grateful to all the participants and staffs in the trial.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan-rong Liang.

Additional information

Supported by National Natural Science Foundation of China (No. 81590951, 81373559, 81373561 and 81573885), the State Key Program for Basic Research of China (No. 2012CB518501), and the Project of the Second Clinical Medical College of Nanjing University of Chinese Medicine (No. RLZZ201605)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Ym., Zhuang, Y., Cai, Dj. et al. Purines Change at Acupoints along the Pericardium Meridian in Healthy and Myocardial Ischemic Rats. Chin. J. Integr. Med. 25, 285–291 (2019). https://doi.org/10.1007/s11655-018-2932-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-018-2932-8

Keywords

Navigation