Ge XT, Lei P, Wang HC, Zhang AL, Han ZL, Chen X, et al. miR-21 improves the neurological outcome after traumatic brain injury in rats. Sci Rep 2014;4:6718.
Article
PubMed
PubMed Central
Google Scholar
Drexel M, Puhakka N, Kirchmair E, Hortnagl H, Pitkanen A, Sperk G. Expression of GABA receptor subunits in the hippocampus and thalamus after experimental traumatic brain injury. Neuropharmacology 2015;88:122–133.
CAS
Article
PubMed
PubMed Central
Google Scholar
Khodaie B, Lotfinia AA, Ahmadi M, Lotfinia M, Jafarian M, Karimzadeh F, et al. Structural and functional effects of social isolation on the hippocampus of rats with traumatic brain injury. Behav Brain Res 2015;278:55–65.
Article
PubMed
Google Scholar
Velazquez R, Ash JA, Powers BE, Kelley CM, Strawderman M, Luscher ZI, et al. Maternal choline supplementation improves spatial learning and adult hippocampal neurogenesis in the Ts65Dn mouse model of down syndrome. Neurobiol Dis 2013;58:92–101.
CAS
Article
PubMed
PubMed Central
Google Scholar
Uchida H, Fujita Y, Matsueda M, Umeda M, Matsuda S, Kato H, et al. Damage to neurons and oligodendrocytes in the hippocampal CA1 sector after transient focal ischemia in rats. Cell Mol Neurobiol 2010;30:1125–1134.
CAS
Article
PubMed
Google Scholar
Huang Y, Shi X, Xu H, Yang H, Chen T, Chen S, et al. Chronic unpredictable stress before pregnancy reduce the expression of brain-derived neurotrophic factor and N-methyl-D-aspartate receptor in hippocampus of offspring rats associated with impairment of memory. Neurochem Res 2010;35:1038–1049.
CAS
Article
PubMed
Google Scholar
Casella EM, Thomas TC, Vanino DL, Fellows-Mayle W, Lifshitz J, Card JP, et al. Traumatic brain injury alters longterm hippocampal neuron morphology in juvenile, but not immature, rats. Childs Nerv Syst 2014;30:1333–1342.
Article
PubMed
Google Scholar
Yan BC, Park JH, Kim IH, Shin BN, Ahn JH, Yoo KY, et al. Chronological changes in inflammatory cytokines immunoreactivities in the mouse hippocampus after systemic administration of high dosage of tetanus toxin. Exp Brain Res 2012;223:271–280.
CAS
Article
PubMed
Google Scholar
Liu JJ, Li SP, Wang YT. Optimization for quantitative determination of four flavonoids in Epimedium by capillary zone electrophoresis coupled with diode array detection using central composite design. J Chromatogr A 2006;1103:344–349.
CAS
Article
PubMed
Google Scholar
Wu J, Du J, Xu C, Le J, Xu Y, Liu B, et al. Icariin attenuates social defeat-induced down-regulation of glucocorticoid receptor in mice. Pharmacol Biochem Behav 2011;98:273–278.
CAS
Article
PubMed
Google Scholar
Sze SC, Tong Y, Ng TB, Cheng CL, Cheung HP. Herba epimedii: anti-oxidative properties and its medical implications. Molecules 2010;15:7861–7870.
CAS
Article
PubMed
Google Scholar
Wang Z, Zhang X, Wang H, Qi L, Lou Y. Neuroprotective effects of icaritin against beta amyloid-induced neurotoxicity in primary cultured rat neuronal cells via estrogendependent pathway. Neuroscience 2007;145:911–922.
CAS
Article
PubMed
Google Scholar
Urano T, Tohda C. Icariin improves memory impairment in Alzheimer's disease model mice (5xFAD) and attenuates amyloid beta-induced neurite atrophy. Phytother Res 2010;24:1658–1663.
CAS
Article
PubMed
Google Scholar
Li F, Gong QH, Wu Q, Lu YF, Shi JS. Icariin isolated from Epimedium brevicornum Maxim attenuates learning and memory deficits induced by d-galactose in rats. Pharmacol Biochem Behav 2010;96:301–305.
CAS
Article
PubMed
Google Scholar
Kumar S, Herbst B, Strickland D. Experimental biomechanical study of head injuries in lateral falls with skateboard helmet. Biomed Sci Instrum 2012;48:239–245.
PubMed
Google Scholar
Bredy TW, Wu H, Crego C, Zellhoefer J, Sun YE, Barad M. Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear. Learn Mem 2007;14:268–276.
CAS
Article
PubMed
PubMed Central
Google Scholar
Young-Bernier M, Kamil Y, Tremblay F, Davidson PSR. Associations between a neurophysiological marker of central cholinergic activity and cognitive functions in young and older adults. Behav Brain Funct 2012;8:17.
Article
PubMed
PubMed Central
Google Scholar
McDonald AJ, Mascagni F, Zaric V. Subpopulations of somatostatin-immunoreactive non-pyramidal neurons in the amygdala and adjacent external capsule project to the basal forebrain: evidence for the existence of GABAergic projection neurons in the cortical nuclei and basolateral nuclear complex. Front Neural Circuit 2012;6:46.
CAS
Article
Google Scholar
Uchida S, Hotta H, Misawa H, Kawashima K. Sustained subcutaneous infusion of nicotine enhances cholinergic vasodilation in the cerebral cortex induced by stimulation of the nucleus basalis of Meynert in rats. Eur J Pharmacol 2011;654:235–240.
CAS
Article
PubMed
Google Scholar
Bentley P, Driver J, Dolan RJ. Cholinergic modulation of cognition: insights from human pharmacological functional neuroimaging. Prog Neurobiol 2011;94:360–388.
CAS
Article
PubMed
PubMed Central
Google Scholar
Aizawa S, Yamamuro Y. Involvement of histone acetylation in the regulation of choline acetyltransferase gene in NG108-15 neuronal cells. Neurochem Int 2010;56:627–633.
CAS
Article
PubMed
Google Scholar
Wang X, Li J, Qian L, Zang XF, Zhang SY, Wang XY, et al. Icariin promotes histone acetylation and attenuates post-stroke cognitive impairment in the central cholinergic circuits of mice. Neuroscience 2013;236:281–288.
CAS
Article
PubMed
Google Scholar
Valiyaveettil M, Alamneh YA, Miller SA, Hammamieh R, Arun P, Wang Y, et al. Modulation of cholinergic pathways and inflammatory mediators in blast-induced traumatic brain injury. Chem Biol Interact 2013;203:371–375.
CAS
Article
PubMed
Google Scholar
Ostberg A, Virta J, Rinne JO, Oikonen V, Luoto P, Nagren K, et al. Cholinergic dysfunction after traumatic brain injury preliminary findings from a PET study. Neurology 2011;76:1046–1050.
CAS
Article
PubMed
Google Scholar
Kelso ML, Wehner JM, Collins AC, ScheffSW, Pauly JR. The pathophysiology of traumatic brain injury in alpha 7 nicotinic cholinergic receptor knockout mice. Brain Res 2006;1083:204–210.
CAS
Article
PubMed
Google Scholar
Scremin OU, Norman KM, Roch M, Holschneider DP, Scremin AME. Acetylcholinesterase inhibition interacts with training to reverse spatial learning deficits after cortical impact injury. J Neurotraum 2012;29:2457–2464.
Article
Google Scholar
Bennouna M, Greene VB, Defranoux L. Cholinergic hypothesis in psychosis following traumatic brain injury and cholinergic hypothesis in schizophrenia: a link? Encephale 2007;33:616–620.
CAS
Article
PubMed
Google Scholar
Zheng M, Qu L, Lou Y. Effects of icariin combined with Panax notoginseng saponins on ischemia reperfusion-induced cognitive impairments related with oxidative stress and CA1 of hippocampal neurons in rat. Phytother Res 2008;22:597–604.
CAS
Article
PubMed
Google Scholar
Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC, et al. Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 2010;328:753–756.
CAS
Article
PubMed
Google Scholar
Levenson JM, O'Riordan KJ, Brown KD, Trinh MA, Molfese DL, Sweatt JD. Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem 2004;279:40545–40559.
CAS
Article
PubMed
Google Scholar
Wang GH, Jiang XY, Pu HJ, Zhang WT, An CR, Hu XM, et al. Scriptaid, a novel histone deacetylase inhibitor, protects against traumatic brain injury via modulation of PTEN and Akt pathway. Neurotherapeutics 2013;10:124–142.
Article
PubMed
Google Scholar
Dash PK, Orsi SA, Moore AN. Histone deactylase inhibition combined with behavioral therapy enhances learning and memory following traumatic brain injury. Neuroscience 2009;163:1–8.
Article
PubMed
PubMed Central
Google Scholar
Fischer A, Sananbenesi F, Mungenast A, Tsai LH. Targeting the correct HDAC(s) to treat cognitive disorders. Trends Pharmacol Sci 2010;31:605–617.
CAS
Article
PubMed
Google Scholar
Sharma SK. Protein acetylation in synaptic plasticity and memory. Neurosci Biobehav Reviews 2010;34:1234–1240.
CAS
Article
Google Scholar