Skip to main content

Advertisement

Log in

Bioinformatics Based Therapeutic Effects of Sinomenium Acutum

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To decipher the possible mechanisms of Sinomenium Acutum (SA) in treating diseases by a bioinformatics method.

Methods

SA ingredients were searched according to Chinese Pharmacopoeia, Chinese Medicine Dictionary and Traditional Chinese Medicines Database (TCMD). Active compounds and target proteins of SA were acquired through the Pubchem platform. Pathway, network and function analyses of SA were performed with ingenuity pathway analysis (IPA), a bioinformatics analysis platform. Disease, biofunction-target networks were established with Cytoscape.

Results

Eighteen ingredients from SA were obtained. Seven active ingredients with 31 active target proteins were acquired according to PubChem Bioassay test. By IPA analysis, 277 canonical pathways belonging to 17 function categories were collected, 23 kinds of diseases, 21 categories bio-functions were obtained. Based on P value, calculated by IPA, the top 5 significant pathway of SA targets include phosphatidylinositol 3 kinase/Akt (PI3K/Akt) signaling, prostate cancer signaling, macrophage migration inhibitory factor (MIF) regulation of innate immunity, Guanosine-binding protein coupled receptor (GPCR) signaling, and ataxia telangiectasia mutated protein (ATM) signaling. Disease and bio-function network analysis indicated that mitogen activated protein kinase 1 (MAPK1), MAPK3, p65 nuclear factor κB (RELA), nuclear factor of κB inhibitor alpha (NFκBIA), interleukin 1β(IL-1β), prostaglandin G/H synthase 2 (PTGS2) and tumor protein 53 (TP53) were the critical targets in various diseases treated by SA.

Conclusion

In the different view of target, pathway, disease and bio-function, inflammation was found to be a central theme in many chronic conditions. SA could be used not only as an anti-inflammatory agent, but also for the treatment of cancers, neurological diseases, psychological disorders and metabolic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 2015;21:677–687.

    Article  Google Scholar 

  2. Strowig T, Henao–Mejia J, Elinav E, Flavell R. Inflammasomes in health and disease. Nature 2012;481:278–286.

    Article  CAS  Google Scholar 

  3. Crusz SM, Balkwill FR. Inflammation and cancer: advances and new agents. Nat Rev Clin Oncol 2015;12:584–596.

    Article  CAS  Google Scholar 

  4. Lanza FL, Chan FK, Quigley EM. Guidelines for prevention of NSAID–related ulcer complications. Am J Gastroenterol 2009;104:728–738.

    PubMed  Google Scholar 

  5. Yamasaki H. Pharmacology of sinomenine, an antirheumatic alkaloid from Sinomenium acutum. Acta Med Okayama 1976;30:1–20.

    CAS  PubMed  Google Scholar 

  6. Zhou H, Wong YF, Wang J, Cai X, Liu L. Sinomenine ameliorates arthritis via MMPs, TIMPs, and cytokines in rats. Biochem Biophys Res Commun 2008;376:352–357.

    Article  CAS  Google Scholar 

  7. Yi L, Luo JF, Xie BB, Liu JX, Wang JY, Liu L, et al. Alpha7 nicotinic acetylcholine receptor is a novel mediator of sinomenine anti–inflammation effect in macrophages stimulated by lipopolysaccharide. Shock 2015;44:188–195.

    Article  CAS  Google Scholar 

  8. Xu M, Liu L, Qi C, Deng B, Cai X. Sinomenine versus NSAIDs for the treatment of rheumatoid arthritis: a systematic review and meta–analysis. Planta Med 2008;74:1423–1429.

    Article  CAS  Google Scholar 

  9. Wang Q, Li XK. Immunosuppressive and anti–inflammatory activities of sinomenine. Int Immunopharmacol 2011;11:373–376.

    Article  CAS  Google Scholar 

  10. Cheng Y, Zhang J, Hou W, Wang D, Li F, Zhang Y, et al. Immunoregulatory effects of sinomenine on the T–bet/GATA–3 ratio and Th1/Th2 cytokine balance in the treatment of mesangial proliferative nephritis. Int Immunopharmacol 2009;9:894–899.

    Article  CAS  Google Scholar 

  11. Kok TW, Yue PY, Mak NK, Fan TP, Liu L, Wong RN. The anti–angiogenic effect of sinomenine. Angiogenesis 2005;8:3–12.

    Article  CAS  Google Scholar 

  12. Mathur S, Dinakarpandian D. Drug repositioning using disease associated biological processes and network analysis of drug targets. AMIA Annu Symp Proc 2011;2011:305–311.

    PubMed  PubMed Central  Google Scholar 

  13. Zhao S, Iyengar R. Systems pharmacology: network analysis to identify multiscale mechanisms of drug action. Annu Rev Pharmacol Toxicol 2012;52:505–521.

    Article  CAS  Google Scholar 

  14. Berger SI, Iyengar R. Network analyses in systems pharmacology. Bioinformatics 2009;25:2466–2472.

    Article  CAS  Google Scholar 

  15. Zhao J, Jiang P, Zhang W. Molecular networks for the study of TCM pharmacology. Brief Bioinform 2010;11:417–430.

    Article  CAS  Google Scholar 

  16. Wang Y, Bolton E, Dracheva S, Karapetyan K, Shoemaker BA, Suzek TO, et al. An overview of the PubChem BioAssay resource. Nucleic Acids Res 2010;38:D255–D266.

    Article  CAS  Google Scholar 

  17. O’Shea JM, Perkins ND. Regulation of the RelA (p65) transactivation domain. Biochem Soc Trans 2008;36:603–608.

    Article  Google Scholar 

  18. Grivennikov SI, Karin M. Inflammation and oncogenesis: a vicious connection. Curr Opin Genet Dev 2010;20:65–71.

    Article  CAS  Google Scholar 

  19. Staudt LM. Oncogenic activation of NF–kappaB. Cold Spring Harb Perspect Biol 2010;2:a109.

    Article  Google Scholar 

  20. Gao J, Pfeifer D, He LJ, Qiao F, Zhang Z, Arbman G, et al. Association of NFκBIA polymorphism with colorectal cancer risk and prognosis in Swedish and Chinese populations. Scand J Gastroenterol 2007;42:345–350.

    Article  CAS  Google Scholar 

  21. Aggarwal BB. Nuclear factor–kappaB: the enemy within. Cancer Cell 2004;6:203–208.

    Article  CAS  Google Scholar 

  22. Li W, Tan D, Zenali MJ, Brown RE. Constitutive activation of nuclear factor–kappa B (NF–κB) signaling pathway in fibrolamellar hepatocellular carcinoma. Int J Clin Exp Pathol 2010;3:238–243.

    CAS  Google Scholar 

  23. Mebratu Y, Tesfaigzi Y. How ERK1/2 activation controls cell proliferation and cell death: is subcellular localization the answer? Cell Cycle 2009;8:1168–1175.

    Article  CAS  Google Scholar 

  24. Roberts PJ, Der CJ. Targeting the Raf–MEK–ERK mitogenactivated protein kinase cascade for the treatment of cancer. Oncogene 2007;26:3291–3310.

    Article  CAS  Google Scholar 

  25. Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, et al. A central role for JNK in obesity and insulin resistance. Nature 2002;420:333–336.

    Article  CAS  Google Scholar 

  26. Muslin AJ. MAPK signalling in cardiovascular health and disease: molecular mechanisms and therapeutic targets. Clin Sci (Lond) 2008;115:203–218.

    Article  CAS  Google Scholar 

  27. Ravingerova T, Barancik M, Strniskova M. Mitogenactivated protein kinases: a new therapeutic target in cardiac pathology. Mol Cell Biochem 2003;247:127–138.

    Article  CAS  Google Scholar 

  28. Giovannini MG, Cerbai F, Bellucci A, Melani C, Grossi C, Bartolozzi C, et al. Differential activation of mitogenactivated protein kinase signalling pathways in the hippocampus of CRND8 transgenic mouse, a model of Alzheimer’s disease. Neuroscience 2008;153:618–633.

    Article  CAS  Google Scholar 

  29. Donehower LA, Harvey M, Slagle BL, Mcarthur MJ, Montgomery CJ, Butel JS, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992;356:215–221.

    Article  CAS  Google Scholar 

  30. Finlay CA, Hinds PW, Levine AJ. The p53 protooncogene can act as a suppressor of transformation. Cell 1989;57:1083–1093.

    Article  CAS  Google Scholar 

  31. Fields S, Jang SK. Presence of a potent transcription activating sequence in the p53 protein. Science 1990;249:1046–1049.

    Article  CAS  Google Scholar 

  32. Riley T, Sontag E, Chen P, Levine A. Transcriptional control of human p53–regulated genes. Nat Rev Mol Cell Biol 2008;9:402–412.

    Article  CAS  Google Scholar 

  33. Meisenberg C, Gilbert DC, Chalmers A, Haley V, Gollins S, Ward SE, et al. Clinical and cellular roles for TDP1 and TOP1 in modulating colorectal cancer response to irinotecan. Mol Cancer Ther 2015;14:575–585.

    Article  CAS  Google Scholar 

  34. Takashima H, Boerkoel CF, John J, Saifi GM, Salih MA, Armstrong D, et al. Mutation of TDP1, encoding a topoisomerase–dependent DNA damage repair enzyme, in spinocerebellar ataxia with axonal neuropathy. Nat Genet 2002;32:267–272.

    Article  CAS  Google Scholar 

  35. Vaccaro A, Tauffenberger A, Ash PE, Carlomagno Y, Petrucelli L, Parker JA. TDP–1/TDP–43 regulates stress signaling and age–dependent proteotoxicity in Caenorhabditis elegans. PLoS Genet 2012;8:e1002806.

    Article  Google Scholar 

  36. Walker S, Meisenberg C, Bibby RA, Askwith T, Williams G, Rininsland FH, et al. Development of an oligonucleotidebased fluorescence assay for the identification of tyrosyl–DNA phosphodiesterase 1 (TDP1) inhibitors. Anal Biochem 2014;454:17–22.

    Article  CAS  Google Scholar 

  37. Darrington RS, Campa VM, Walker MM, Bengoa–Vergniory N, Gorrono–Etxebarria I, Uysal–Onganer P, et al. Distinct expression and activity of GSK–3alpha and GSK–3beta in prostate cancer. Int J Cancer 2012;131:e872–E883.

    Article  Google Scholar 

  38. Schaffer BA, Bertram L, Miller BL, Mullin K, Weintraub S, Johnson N, et al. Association of GSK3B with Alzheimer disease and frontotemporal dementia. Arch Neurol 2008;65:1368–1374.

    Article  Google Scholar 

  39. Giovannini C, Baglioni M, Baron Toaldo M, Ventrucci C, D’Adamo S, Cipone M, et al. Notch3 inhibition enhances sorafenib cytotoxic efficacy by promoting GSK3b phosphorylation and p21 down–regulation in hepatocellular carcinoma. Oncotarget 2013;4:1618–1631.

    Article  Google Scholar 

  40. Ge D, Dauchy RT, Liu S, Zhang Q, Mao L, Dauchy EM, et al. Insulin and IGF1 enhance IL–17–induced chemokine expression through a GSK3B–dependent mechanism: a new target for melatonin’s anti–inflammatory action. J Pineal Res 2013;55:377–387.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Pacheco BP, Crajoinas RO, Couto GK, Davel AP, Lessa LM, Rossoni LV, et al. Dipeptidyl peptidase IV inhibition attenuates blood pressure rising in young spontaneously hypertensive rats. J Hypertens 2011;29:520–528.

    Article  CAS  Google Scholar 

  42. Theiss HD, Brenner C, Engelmann MG, Zaruba MM, Huber B, Henschel V, et al. Safety and efficacy of SITAgliptin plus GRanulocyte–colony–stimulating factor in patients suffering from acute myocardial infarction (SITAGRAMI–Trial)–rationale, design and first interim analysis. Int J Cardiol 2010;145:282–284.

    Article  Google Scholar 

  43. Gomez N, Touihri K, Matheeussen V, Mendes DCA, Mahmoudabady M, Mathieu M, et al. Dipeptidyl peptidase IV inhibition improves cardiorenal function in overpacinginduced heart failure. Eur J Heart Fail 2012;14:14–21.

    Article  CAS  Google Scholar 

  44. Ikushima H, Munakata Y, Iwata S, Ohnuma K, Kobayashi S, Dang NH, et al. Soluble CD26/dipeptidyl peptidase IV enhances transendothelial migration via its interaction with mannose 6–phosphate/insulin–like growth factor IV receptor. Cell Immunol 2002;215:106–110.

    Article  CAS  Google Scholar 

  45. Martelli AM, Tabellini G, Bressanin D, Ognibene A, Goto K, Cocco L, et al. The emerging multiple roles of nuclear Akt. Biochim Biophys Acta 2012;1823:2168–2178.

    Article  CAS  Google Scholar 

  46. Yu H, Littlewood T, Bennett M. Akt isoforms in vascular disease. Vascul Pharmacol 2015;71:57–64.

    Article  CAS  Google Scholar 

  47. Guillermet–Guibert J, Bjorklof K, Salpekar A, Gonella C, Ramadani F, Bilancio A, et al. The p110beta isoform of phosphoinositide 3–kinase signals downstream of G proteincoupled receptors and is functionally redundant with p110gamma. Proc Natl Acad Sci U S A 2008;105:8292–8297.

    Article  Google Scholar 

  48. Baudhuin LM, Cristina KL, Lu J, Xu Y. Akt activation induced by lysophosphatidic acid and sphingosine–1–phosphate requires both mitogen–activated protein kinase and p38 mitogen–activated protein kinase is cell–line specific. Mol Pharmacol 2002;62:660–671.

    Article  CAS  Google Scholar 

  49. Calandra T, Roger T. Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol 2003;3:791–800.

    Article  CAS  Google Scholar 

  50. Bucala R, Donnelly SC. Macrophage migration inhibitory factor: a probable link between inflammation and cancer. Immunity 2007;26:281–285.

    Article  CAS  Google Scholar 

  51. Santos LL, Lacey D, Yang Y, Leech M, Morand EF. Activation of synovial cell p38 MAP kinase by macrophage migration inhibitory factor. J Rheumatol 2004;31:1038–1043.

    CAS  PubMed  Google Scholar 

  52. Leech M, Lacey D, Xue JR, Santos L, Hutchinson P, Wolvetang E, et al. Regulation of p53 by macrophage migration inhibitory factor in inflammatory arthritis. Arthritis Rheum 2003;48:1881–1889.

    Article  CAS  Google Scholar 

  53. Paull TT. Mechanisms of ATM activation. Annu Rev Biochem 2015;84:711–738.

    Article  CAS  Google Scholar 

  54. Hadian K, Krappmann D. Signals from the nucleus: activation of NF–kappaB by cytosolic ATM in the DNA damage response. Sci Signal 2011;4:e2.

    Article  Google Scholar 

  55. Mirzayans R, Andrais B, Scott A, Murray D. New insights into p53 signaling and cancer cell response to DNA damage: implications for cancer therapy. J Biomed Biotechnol 2012;2012:170325.

    Article  Google Scholar 

  56. Reinhardt HC, Schumacher B. The p53 network: cellular and systemic DNA damage responses in aging and cancer. Trends Genet 2012;28:128–136.

    Article  CAS  Google Scholar 

  57. Li Z, Zheng Z, Ruan J, Li Z, Zeng CM. Chronic inflammation links cancer and Parkinson’s disease. Front Aging Neurosci 2016;8:126.

    PubMed  PubMed Central  Google Scholar 

  58. Kim EK, Choi EJ. Compromised MAPK signaling in human diseases: an update. Arch Toxicol 2015;89:867–882.

    Article  CAS  Google Scholar 

  59. Goldsmith DR, Haroon E, Woolwine BJ, Jung MY, Wommack EC, Harvey PD, et al. Inflammatory markers are associated with decreased psychomotor speed in patients with major depressive disorder. Brain Behav Immun 2016;56:281–288.

    Article  CAS  Google Scholar 

  60. Burke JE, Williams RL. Synergy in activating class IV PI3Ks. Trends Biochem Sci 2015;40:88–100.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Liu.

Additional information

Supported by the National Natural Science Foundation of China (No. 81072982)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Yy., Zheng, G. & Liu, L. Bioinformatics Based Therapeutic Effects of Sinomenium Acutum. Chin. J. Integr. Med. 25, 122–130 (2019). https://doi.org/10.1007/s11655-018-2796-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-018-2796-6

Keywords

Navigation