Bioinformatics Based Therapeutic Effects of Sinomenium Acutum

  • Yu-yan Li
  • Guang Zheng
  • Liang Liu
Original Article



To decipher the possible mechanisms of Sinomenium Acutum (SA) in treating diseases by a bioinformatics method.


SA ingredients were searched according to Chinese Pharmacopoeia, Chinese Medicine Dictionary and Traditional Chinese Medicines Database (TCMD). Active compounds and target proteins of SA were acquired through the Pubchem platform. Pathway, network and function analyses of SA were performed with ingenuity pathway analysis (IPA), a bioinformatics analysis platform. Disease, biofunction-target networks were established with Cytoscape.


Eighteen ingredients from SA were obtained. Seven active ingredients with 31 active target proteins were acquired according to PubChem Bioassay test. By IPA analysis, 277 canonical pathways belonging to 17 function categories were collected, 23 kinds of diseases, 21 categories bio-functions were obtained. Based on P value, calculated by IPA, the top 5 signififi cant pathway of SA targets include phosphatidylinositol 3 kinase/Akt (PI3K/Akt) signaling, prostate cancer signaling, macrophage migration inhibitory factor (MIF) regulation of innate immunity, Guanosine-binding protein coupled receptor (GPCR) signaling, and ataxia telangiectasia mutated protein (ATM) signaling. Disease and bio-function network analysis indicated that mitogen activated protein kinase 1 (MAPK1), MAPK3, p65 nuclear factor κB (RELA), nuclear factor of κB inhibitor alpha (NFκBIA), interleukin 1β(IL-1β), prostaglandin G/H synthase 2 (PTGS2) and tumor protein 53 (TP53) were the critical targets in various diseases treated by SA.


In the different view of target, pathway, disease and bio-function, inflfl ammation was found to be a central theme in many chronic conditions. SA could be used not only as an anti-inflfl ammatory agent, but also for the treatment of cancers, neurological diseases, psychological disorders and metabolic diseases.


Sinomenium Acutum bioinformatics analysis ingenuity pathway analysis network pharmacology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11655_2018_2796_MOESM1_ESM.pdf (584 kb)
Supplementary material, approximately 584 KB.


  1. 1.
    Guo H, Callaway JB, Ting JP. Infl ammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 2015;21:677–687.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Strowig T, Henao-Mejia J, Elinav E, Flavell R. Infl ammasomes in health and disease. Nature 2012;481:278–286.CrossRefPubMedGoogle Scholar
  3. 3.
    Crusz SM, Balkwill FR. Infl ammation and cancer: advances and new agents. Nat Rev Clin Oncol 2015;12:584–596.CrossRefPubMedGoogle Scholar
  4. 4.
    Lanza FL, Chan FK, Quigley EM. Guidelines for prevention of NSAID-related ulcer complications. Am J Gastroenterol 2009;104:728–738.CrossRefPubMedGoogle Scholar
  5. 5.
    Yamasaki H. Pharmacology of sinomenine, an antirheumatic alkaloid from Sinomenium acutum. Acta Med Okayama 1976;30:1–20.PubMedGoogle Scholar
  6. 6.
    Zhou H, Wong YF, Wang J, Cai X, Liu L. Sinomenine ameliorates arthritis via MMPs, TIMPs, and cytokines in rats. Biochem Biophys Res Commun 2008;376:352–357.CrossRefPubMedGoogle Scholar
  7. 7.
    Yi L, Luo JF, Xie BB, Liu JX, Wang JY, Liu L, et al. Alpha7 nicotinic acetylcholine receptor is a novel mediator of sinomenine anti-inflammation effect in macrophages stimulated by lipopolysaccharide. Shock 2015;44:188–195.CrossRefPubMedGoogle Scholar
  8. 8.
    Xu M, Liu L, Qi C, Deng B, Cai X. Sinomenine versus NSAIDs for the treatment of rheumatoid arthritis: a systematic review and meta-analysis. Planta Med 2008;74:1423–1429.CrossRefPubMedGoogle Scholar
  9. 9.
    Wang Q, Li XK. Immunosuppressive and anti-infl ammatory activities of sinomenine. Int Immunopharmacol 2011;11:373–376.CrossRefPubMedGoogle Scholar
  10. 10.
    Cheng Y, Zhang J, Hou W, Wang D, Li F, Zhang Y, et al. Immunoregulatory effects of sinomenine on the T-bet/GATA-3 ratio and Th1/Th2 cytokine balance in the treatment of mesangial proliferative nephritis. Int Immunopharmacol 2009;9:894–899.CrossRefPubMedGoogle Scholar
  11. 11.
    Kok TW, Yue PY, Mak NK, Fan TP, Liu L, Wong RN. The anti-angiogenic effect of sinomenine. Angiogenesis 2005;8:3–12.CrossRefPubMedGoogle Scholar
  12. 12.
    Mathur S, Dinakarpandian D. Drug repositioning using disease associated biological processes and network analysis of drug targets. AMIA Annu Symp Proc 2011;2011:305–311.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Zhao S, Iyengar R. Systems pharmacology: network analysis to identify multiscale mechanisms of drug action. Annu Rev Pharmacol Toxicol 2012;52:505–521.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Berger SI, Iyengar R. Network analyses in systems pharmacology. Bioinformatics 2009;25:2466–2472.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zhao J, Jiang P, Zhang W. Molecular networks for the study of TCM pharmacology. Brief Bioinform 2010;11:417–430.CrossRefPubMedGoogle Scholar
  16. 16.
    Wang Y, Bolton E, Dracheva S, Karapetyan K, Shoemaker BA, Suzek TO, et al. An overview of the PubChem BioAssay resource. Nucleic Acids Res 2010;38:D255–D266.CrossRefPubMedGoogle Scholar
  17. 17.
    O'Shea JM, Perkins ND. Regulation of the RelA (p65) transactivation domain. Biochem Soc Trans 2008;36:603–608.CrossRefPubMedGoogle Scholar
  18. 18.
    Grivennikov SI, Karin M. Infl ammation and oncogenesis: a vicious connection. Curr Opin Genet Dev 2010;20:65–71.CrossRefPubMedGoogle Scholar
  19. 19.
    Staudt LM. Oncogenic activation of NF-kappaB. Cold Spring Harb Perspect Biol 2010;2:a109.CrossRefGoogle Scholar
  20. 20.
    Gao J, Pfeifer D, He LJ, Qiao F, Zhang Z, Arbman G, et al. Association of NFκBIA polymorphism with colorectal cancer risk and prognosis in Swedish and Chinese populations. Scand J Gastroenterol 2007;42:345–350.CrossRefPubMedGoogle Scholar
  21. 21.
    Aggarwal BB. Nuclear factor-kappaB: the enemy within. Cancer Cell 2004;6:203–208.CrossRefPubMedGoogle Scholar
  22. 22.
    Li W, Tan D, Zenali MJ, Brown RE. Constitutive activation of nuclear factor-kappa B (NF-κB) signaling pathway in fi brolamellar hepatocellular carcinoma. Int J Clin Exp Pathol 2010;3:238–243.Google Scholar
  23. 23.
    Mebratu Y, Tesfaigzi Y. How ERK1/2 activation controls cell proliferation and cell death: is subcellular localization the answer? Cell Cycle 2009;8:1168–1175.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogenactivated protein kinase cascade for the treatment of cancer. Oncogene 2007;26:3291–3310.CrossRefPubMedGoogle Scholar
  25. 25.
    Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, et al. A central role for JNK in obesity and insulin resistance. Nature 2002;420:333–336.CrossRefPubMedGoogle Scholar
  26. 26.
    Muslin AJ. MAPK signalling in cardiovascular health and disease: molecular mechanisms and therapeutic targets. Clin Sci (Lond) 2008;115:203–218.CrossRefGoogle Scholar
  27. 27.
    Ravingerova T, Barancik M, Strniskova M. Mitogenactivated protein kinases: a new therapeutic target in cardiac pathology. Mol Cell Biochem 2003;247:127–138.CrossRefPubMedGoogle Scholar
  28. 28.
    Giovannini MG, Cerbai F, Bellucci A, Melani C, Grossi C, Bartolozzi C, et al. Differential activation of mitogenactivated protein kinase signalling pathways in the hippocampus of CRND8 transgenic mouse, a model of Alzheimer's disease. Neuroscience 2008;153:618–633.CrossRefPubMedGoogle Scholar
  29. 29.
    Donehower LA, Harvey M, Slagle BL, Mcarthur MJ, Montgomery CJ, Butel JS, et al. Mice defi cient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992;356:215–221.CrossRefPubMedGoogle Scholar
  30. 30.
    Finlay CA, Hinds PW, Levine AJ. The p53 protooncogene can act as a suppressor of transformation. Cell 1989;57:1083–1093.CrossRefPubMedGoogle Scholar
  31. 31.
    Fields S, Jang SK. Presence of a potent transcription activating sequence in the p53 protein. Science 1990;249:1046–1049.CrossRefPubMedGoogle Scholar
  32. 32.
    Riley T, Sontag E, Chen P, Levine A. Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 2008;9:402–412.CrossRefPubMedGoogle Scholar
  33. 33.
    Meisenberg C, Gilbert DC, Chalmers A, Haley V, Gollins S, Ward SE, et al. Clinical and cellular roles for TDP1 and TOP1 in modulating colorectal cancer response to irinotecan. Mol Cancer Ther 2015;14:575–585.CrossRefPubMedGoogle Scholar
  34. 34.
    Takashima H, Boerkoel CF, John J, Saifi GM, Salih MA, Armstrong D, et al. Mutation of TDP1, encoding a topoisomerase I-dependent DNA damage repair enzyme, in spinocerebellar ataxia with axonal neuropathy. Nat Genet 2002;32:267–272.CrossRefPubMedGoogle Scholar
  35. 35.
    Vaccaro A, Tauffenberger A, Ash PE, Carlomagno Y, Petrucelli L, Parker JA. TDP-1/TDP-43 regulates stress signaling and age-dependent proteotoxicity in Caenorhabditis elegans. PLoS Genet 2012;8:e1002806.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Walker S, Meisenberg C, Bibby RA, Askwith T, Williams G, Rininsland FH, et al. Development of an oligonucleotidebased fluorescence assay for the identification of tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors. Anal Biochem 2014;454:17–22.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Darrington RS, Campa VM, Walker MM, Bengoa-Vergniory N, Gorrono-Etxebarria I, Uysal-Onganer P, et al. Distinct expression and activity of GSK-3alpha and GSK-3beta in prostate cancer. Int J Cancer 2012;131:e872-E883.CrossRefGoogle Scholar
  38. 38.
    Schaffer BA, Bertram L, Miller BL, Mullin K, Weintraub S, Johnson N, et al. Association of GSK3B with Alzheimer disease and frontotemporal dementia. Arch Neurol 2008;65:1368–1374.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Giovannini C, Baglioni M, Baron Toaldo M, Ventrucci C, D'Adamo S, Cipone M, et al. Notch3 inhibition enhances sorafenib cytotoxic efficacy by promoting GSK3b phosphorylation and p21 down-regulation in hepatocellular carcinoma. Oncotarget 2013;4:1618–1631.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ge D, Dauchy RT, Liu S, Zhang Q, Mao L, Dauchy EM, et al. Insulin and IGF1 enhance IL-17-induced chemokine expression through a GSK3B-dependent mechanism: a new target for melatonin's anti-infl ammatory action. J Pineal Res 2013;55:377–387.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Pacheco BP, Crajoinas RO, Couto GK, Davel AP, Lessa LM, Rossoni LV, et al. Dipeptidyl peptidase IV inhibition attenuates blood pressure rising in young spontaneously hypertensive rats. J Hypertens 2011;29:520–528.CrossRefPubMedGoogle Scholar
  42. 42.
    Theiss HD, Brenner C, Engelmann MG, Zaruba MM, Huber B, Henschel V, et al. Safety and effi cacy of SITAgliptin plus GRanulocyte-colony-stimulating factor in patients suffering from acute myocardial infarction (SITAGRAMI-Trial)-rationale, design and first interim analysis. Int J Cardiol 2010;145:282–284.CrossRefPubMedGoogle Scholar
  43. 43.
    Gomez N, Touihri K, Matheeussen V, Mendes DCA, Mahmoudabady M, Mathieu M, et al. Dipeptidyl peptidase IV inhibition improves cardiorenal function in overpacinginduced heart failure. Eur J Heart Fail 2012;14:14–21.CrossRefPubMedGoogle Scholar
  44. 44.
    Ikushima H, Munakata Y, Iwata S, Ohnuma K, Kobayashi S, Dang NH, et al. Soluble CD26/dipeptidyl peptidase IV enhances transendothelial migration via its interaction with mannose 6-phosphate/insulin-like growth factor II receptor. Cell Immunol 2002;215:106–110.CrossRefPubMedGoogle Scholar
  45. 45.
    Martelli AM, Tabellini G, Bressanin D, Ognibene A, Goto K, Cocco L, et al. The emerging multiple roles of nuclear Akt. Biochim Biophys Acta 2012;1823:2168–2178.CrossRefPubMedGoogle Scholar
  46. 46.
    Yu H, Littlewood T, Bennett M. Akt isoforms in vascular disease. Vascul Pharmacol 2015;71:57–64.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Guillermet-Guibert J, Bjorklof K, Salpekar A, Gonella C, Ramadani F, Bilancio A, et al. The p110beta isoform of phosphoinositide 3-kinase signals downstream of G proteincoupled receptors and is functionally redundant with p110gamma. Proc Natl Acad Sci U S A 2008;105:8292–8297.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Baudhuin LM, Cristina KL, Lu J, Xu Y. Akt activation induced by lysophosphatidic acid and sphingosine-1-phosphate requires both mitogen-activated protein kinase and p38 mitogen-activated protein kinase is cell-line specifi c. Mol Pharmacol 2002;62:660–671.CrossRefPubMedGoogle Scholar
  49. 49.
    Calandra T, Roger T. Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol 2003;3:791–800.CrossRefPubMedGoogle Scholar
  50. 50.
    Bucala R, Donnelly SC. Macrophage migration inhibitory factor: a probable link between infl ammation and cancer. Immunity 2007;26:281–285.CrossRefPubMedGoogle Scholar
  51. 51.
    Santos LL, Lacey D, Yang Y, Leech M, Morand EF. Activation of synovial cell p38 MAP kinase by macrophage migration inhibitory factor. J Rheumatol 2004;31:1038–1043.PubMedGoogle Scholar
  52. 52.
    Leech M, Lacey D, Xue JR, Santos L, Hutchinson P, Wolvetang E, et al. Regulation of p53 by macrophage migration inhibitory factor in infl ammatory arthritis. Arthritis Rheum 2003;48:1881–1889.CrossRefPubMedGoogle Scholar
  53. 53.
    Paull TT. Mechanisms of ATM activation. Annu Rev Biochem 2015;84:711–738.CrossRefPubMedGoogle Scholar
  54. 54.
    Hadian K, Krappmann D. Signals from the nucleus: activation of NF-kappaB by cytosolic ATM in the DNA damage response. Sci Signal 2011;4:e2.CrossRefGoogle Scholar
  55. 55.
    Mirzayans R, Andrais B, Scott A, Murray D. New insights into p53 signaling and cancer cell response to DNA damage: implications for cancer therapy. J Biomed Biotechnol 2012;2012:170325.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Reinhardt HC, Schumacher B. The p53 network: cellular and systemic DNA damage responses in aging and cancer. Trends Genet 2012;28:128–136.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Li Z, Zheng Z, Ruan J, Li Z, Zeng CM. Chronic infl ammation links cancer and Parkinson's disease. Front Aging Neurosci 2016;8:126.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Kim EK, Choi EJ. Compromised MAPK signaling in human diseases: an update. Arch Toxicol 2015;89:867–882.CrossRefPubMedGoogle Scholar
  59. 59.
    Goldsmith DR, Haroon E, Woolwine BJ, Jung MY, Wommack EC, Harvey PD, et al. Infl ammatory markers are associated with decreased psychomotor speed in patients with major depressive disorder. Brain Behav Immun 2016;56:281–288.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Burke JE, Williams RL. Synergy in activating class I PI3Ks. Trends Biochem Sci 2015;40:88–100.CrossRefPubMedGoogle Scholar

Copyright information

© Chinese Association of the Integration of Traditional and Western Medicine 2018

Authors and Affiliations

  1. 1.Faculty of Chinese MedicineMacau University of Science and TechnologyMacauChina
  2. 2.Department of NephrologyShenzhen Traditional Chinese Medicine HospitalShenzhenChina
  3. 3.School of Information Science and EngineeringLanzhou UniversityLanzhouChina

Personalised recommendations