Skip to main content

Advertisement

Log in

Dampness-Heat Accelerates DMBA-Induced Mammary Tumors in Rats

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To investigate the impact of dampness-heat (DH) on the development of mammary tumors in 7,12-dimethylbenz(a)anthracene (DMBA)-induced rats.

Methods

Forty rats were randomly divided into 3 groups in a randomized block design, including the control group (n=13), DMBA group (n=14), and DMBA plus DH group (n=13). Rats in the DMBA group and DMBA plus DH group were intragastrically administrated with DMBA (100 mg/kg) for twice, once per week, while rats in the control group were treated with equivalent volumes of sesame oil. After DMBA administration, rats in the DMBA plus DH group were exposed to a simulated climate chamber with ambient temperature (33.0±0.5°C) and humidity (90%±5%) for 8 weeks, 8 h per day. The body weight, time of tumor formation, and number of tumors were measured weekly to calculate tumor incidence, average latency period, average number of tumors, and average tumor weight. At the end of the experiment, the levels of matrix metalloproteinase 9 (MMP-9) and tissue inhibitor of metalloproteinases 1 (TIMP-1) in serum, and the contents of tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β in serum and tumor tissue were measured, respectively. Some tumor tissues were processed for hematoxylin-eosin staining to determine the histopathological changes.

Results

Compared with DMBA, DMBA plus DH significantly increased the average number of tumors, average tumor weight, levels of serum MMP-9, TIMP-1, TNF-α and IL-1β, and contents of tumor tissue TNF-α and IL-1β (P<0.05 or P<0.01).

Conclusion

DH could accelerate the development of mammary tumors through increasing the expressions of MMP-9, TIMP-1, TNF-α and IL-1β in DMBA-induced rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011;61:69–90.

    Article  PubMed  Google Scholar 

  2. Li JJ, Fu JP, Li JT. Chinese medicine approach in clinical practice for breast cancer survivors. Chin J Integr Med 2012;18:308–315.

    Article  PubMed  Google Scholar 

  3. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012;490:61–70.

    Article  CAS  Google Scholar 

  4. Banin Hirata BK, Oda JM, Losi Guembarovski R, Ariza CB, de Oliveira CE, Watanabe MA. Molecular markers for breast cancer: prediction on tumor behavior. Dis Markers 2014;2014:513158.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Han SY, Li PP. Progress of research in antitumor mechanisms with Chinese medicine. Chin J Integr Med 2009;15:316–320.

    Article  PubMed  Google Scholar 

  6. Sun Y. The role of Chinese medicine in clinical oncology. Chin J Integr Med 2014;20:3–10.

    Article  PubMed  CAS  Google Scholar 

  7. Li J, Lin HS. Integrative medicine: a characteristic China model for cancer treatment. Chin J Integr Med 2011;17:243–245.

    Article  PubMed  Google Scholar 

  8. Huang JS, Huang H. Analysis on etiology of breast cancer in traditional Chinese medicine. J Tradit Chin Med (Chin) 2011;52:2154–2156.

    Google Scholar 

  9. Feng NN, Jiang SM. Simple analysis on pathogenesis of pre-cancerous lesions of gastric cancer. J Liaoning Univ Tradit Chin Med (Chin) 2012;14:110–111.

    Google Scholar 

  10. Chen Z, Wang P. Clinical distribution and molecular basis of traditional Chinese medicine ZHENG in cancer. Evid Based Complement Alternat Med 2012;2012:783923.

    PubMed  PubMed Central  Google Scholar 

  11. Wang SJ, Wei AL. Exploring the pathogenesis and therapy of liver cancer from “damp-heat insidious pathogen” to “cancer toxin”. Chin J Integr Tradit West Med (Chin) 2013;33:266–269.

    Google Scholar 

  12. Todorova VK, Harms SA, Luo S, Kaufmann Y, Babb KB, Klimberg VS. Oral glutamine (AES-14) supplementation inhibits PI-3k/Akt signaling in experimental breast cancer. JPEN J Parenter Enteral Nutr 2003;27:404–410.

    Article  PubMed  CAS  Google Scholar 

  13. Shang GB, Zeng LP, Zhao Y, Zhang QY, Dong W, Tang XL, et al. Effect of Erzhi Pills on expressions of VEGF and MMP-9 in induced rat breast cancer. Chin J Exp Tradit Med Formul (Chin) 2013;19:270–273.

    Google Scholar 

  14. Zhang M, Chen G, Zhang LT, Qiu XF. Study on animal model of dampness of the six external factors. Hubei J Tradit Chin Med (Chin) 2007;29:5–6.

    Google Scholar 

  15. Thompson HJ, Singh M. Rat models of premalignant breast disease. J Mammary Gland Biol Neoplasia 2000;5:409–420.

    Article  PubMed  CAS  Google Scholar 

  16. Mehta RG. Experimental basis for the prevention of breast cancer. Eur J Cancer 2000;36:1275–1282.

    Article  PubMed  CAS  Google Scholar 

  17. Peng JH, Zhang F, Zhang HX, Fan HY. Prepubertal octylphenol exposure up-regulate BRCA1 expression, down-regulate ERa expression and reduce rat mammary tumorigenesis. Cancer Epidemiol 2009;33:51–55.

    Article  PubMed  CAS  Google Scholar 

  18. Qin LP, Meng J, Lang QB, Liu L, Li B. Pattern characteristics in patients with primary liver cancer in different clinical stages. J Tradit Chin Med 2015;35:47–53.

    Article  PubMed  Google Scholar 

  19. Sun YZ, Liu HN, Zhu WF, Zhao Y. The introduction and the significance of hypothesis that yin-deficiency and malignant tumor is related. J Jiangxi Univ Tradit Chin Med (Chin) 2008;20:1–5.

    Google Scholar 

  20. Zheng LX, Zhang YR, Zhu WF, Liu HN. Effect of yin deficient in tumor cell proliferation of tumor bearing mice. Lishizhen Med Mater Med Res (Chin) 2007;18:3001–3002.

    CAS  Google Scholar 

  21. Yu G, Xie B, Rao B, Liu HN. Discussion of the relationship between yin-deficiency and tumor angiogenesis. J Jiangxi Univ Tradit Chin Med (Chin) 2014;26:27–29.

    Google Scholar 

  22. Ham M, Moon A. Inflammatory and microenvironmental factors involved in breast cancer progression. Arch Pharm Res 2013;36:1419–1431.

    Article  PubMed  CAS  Google Scholar 

  23. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 2010;141:52–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Wu ZS, Wu Q, Yang JH, Wang HQ, Ding XD, Yang F, et al. Prognostic significance of MMP-9 and TIMP-1 serum and tissue expression in breast cancer. Int J Cancer 2008;122:2050–2056.

    Article  PubMed  CAS  Google Scholar 

  25. Thorsen SB, Christensen SL, Würtz SO, Lundberg M, Nielsen BS, Vinther L, et al. Plasma levels of the MMP-9: TIMP-1 complex as prognostic biomarker in breast cancer: a retrospective study. BMC Cancer 2013;13:598.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Hojilla CV, Wood GA, Khokha R. Inflammation and breast cancer: metalloproteinases as common effectors of inflammation and extracellular matrix breakdown in breast cancer. Breast Cancer Res 2008;10:205.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Mantovani A, Marchesi F, Porta C, Sica A, Allavena P. Inflammation and cancer: breast cancer as a prototype. Breast 2007;16:S27–S33.

    Article  PubMed  Google Scholar 

  28. Barker HE, Chang J, Cox TR, Lang G, Bird D, Nicolau M, et al. LOXL2-mediated matrix remodeling in metastasis and mammary gland involution. Cancer Res 2011;71:1561–1572.

    Article  PubMed  CAS  Google Scholar 

  29. Müller V, Riethdorf S, Rack B, Janni W, Fasching PA, Solomayer E, et al. Prospective evaluation of serum tissue inhibitor of metalloproteinase 1 and carbonic anhydrase ? in correlation to circulating tumor cells in patients with metastatic breast cancer. Breast Cancer Res 2011;13:1–11.

    Article  Google Scholar 

  30. Leifler KS, Svensson S, Abrahamsson A, Bendrik C, Robertson J, Gauldie J, et al. Inflammation induced by MMP-9 enhances tumor regression of experimental breast cancer. J Immunol 2013;190:4420–4430.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet 2001;357:539–545.

    Article  PubMed  CAS  Google Scholar 

  32. Zhu X, Mulcahy LA, Mohammed RA, Lee AH, Franks HA, Kilpatrick L, et al. IL-17 expression by breast-cancerassociated macrophages: IL-17 promotes invasiveness of breast cancer cell lines. Breast Cancer Res 2008;10:1–11.

    Article  CAS  Google Scholar 

  33. Liu L, Gao Y, Ma B. Exploring molecular mechanism underlying Chinese medicine syndrome: a study on correlation between Chinese medicine syndrome and biomarkers for ischemic stroke. Chin J Integr Med 2014;20:11–18.

    Article  PubMed  CAS  Google Scholar 

  34. Luo HH, Zhang FX, Wu W, Wang XH. Haoqin Qingdan Decoction and ribavirin therapy downregulate CD14 and toll-like receptor 4 in febrile disease with dampnessheat syndrome in a mouse model. Chin J Integr Med 2016;22:768–773.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-ning Liu.

Additional information

Supported by the National Natural Science Foundation of China (No. 81260523)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, W., Tang, Xl., Shang, Gb. et al. Dampness-Heat Accelerates DMBA-Induced Mammary Tumors in Rats. Chin. J. Integr. Med. 24, 758–762 (2018). https://doi.org/10.1007/s11655-017-2821-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-017-2821-1

Keywords

Navigation