Skip to main content

Advertisement

Log in

Gambogic Acid Induces Cell Apoptosis and Inhibits MAPK Pathway in PTEN−/−/p53−/− Prostate Cancer Cells In Vitro and Ex Vivo

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To investigate the effect of gambogic acid (GA) on the growth and cell death of castrate resistant prostate cancer (PC) with phosphate and tension homology (PTEN) and p53 genes deleted in vitro and ex vivo, and elucidate the underlying possible molecular mechanisms.

Methods

PTEN−/−/p53−/− PC cells and Los Angeles prostate cancer-4 (LAPC-4) cells were treated with GA for 24 h and 48 h, then cell viability was determined by cell proliferation assay. PTEN−/−/p53−/− PC cells organoids number was calculated under GA treatment for 1 week. In addition, cell titer glo assay was performed to analyze 3 dimensional cell viability of patients derived xenografts (PDX) 170.2 organoids. Flow cytometry was used to detect apoptotic cells treated with GA. And confocal image was performed to detect the apoptotic mitochondrial morphological changes. Apoptotic cell death related protein levels were measured through Western blot (WB) in GA treated cells and organoids. The expression levels of mitogen-activated protein kinases (MAPKs) pathway related ribonucleic acid (RNAs) and proteins were analyzed by reverse transcription polymerase chain reaction (RT-PCR) and WB, respectively.

Results

The treatment of GA significantly reduced cell viability of PTEN−/−/p53−/− PC cells and LAPC-4 in a time- and concentration-dependent manner. In organoids, GA showed strong inhibition towards organoids’ numbers and diameters and continuously led to a complete organoids inhibition with GA 150 nmol/L. Ex vivo results validated that GA 1 μmol/L inhibited 44.6% PDX170.2 organoids growth. As for mechanism, flow cytometry detected continuously increased apoptotic portion under GA treatment from 1.98% to 11.78% (6 h) and 29.94% (8 h, P<0.05). In addition, mitochondrial fragmentation emerged in GA treated cells indicated the mitochondrial apoptotic pathway might be involved. Furthermore, WB detected caspases-3, -9 activation and light chain (LC)-3 conversion with GA treatment. WB revealed decreased activity of MAPK pathway and down-regulation of downstream c-fos oncogene RNA level was detected by RT-PCR before undergoing apoptosis (P<0.05).

Conclusion

GA was a potent anti-tumor compound as for PTEN−/−/p53−/− PC, which contributed to cell apoptosis via inhibition of the MAPK pathway and c-fos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA 2014;64:9–29.

    PubMed  Google Scholar 

  2. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010;127:2893–2917.

    Article  CAS  PubMed  Google Scholar 

  3. Chen R, Ren S, Yiu MK, Fai NC, Cheng WS, Ian LH, et al. Prostate cancer in Asia: a collaborative report. Asian J Urol 2014;1:15–27.

    Article  PubMed  Google Scholar 

  4. Yang X, Monn MF, Liu L, Liu Y, Su J, Lyu T, et al. Incidental prostate cancer in Asian men: high prevalence of incidental prostatic adenocarcinoma in Chinese patients undergoing radical cystoprostatect-omy for treatment of bladder cancer and selection of candidates for prostate-sparing cystectomy. Prostate 2015;75:845–854.

    Article  PubMed  Google Scholar 

  5. Roudier MP, True LD, Higano CS, Vesselle H, Ellis W, Lange P, et al. Phenotypic heterogeneity of end-stage prostate carcinoma metastatic to bone. Hum Pathol 2003;34:646–653.

    Article  PubMed  Google Scholar 

  6. Sircar K, Yoshimoto M, Monzon FA, Koumakpayi IH, Katz RL, Khanna A, et al. PTEN genomic deletion is associated with p-Akt and AR signalling in poorer outcome, hormone refractory prostate cancer. J Pathol 2009;218:505–513.

    Article  CAS  PubMed  Google Scholar 

  7. Schlomm T, Iwers L, Kirstein P, Jessen B, Kollermann J, Prien K, et al. Clinical significance of p53 alterations in surgically treated prostate cancers. Mod Pathol 2008;21:1371–1378.

    Article  CAS  PubMed  Google Scholar 

  8. Agell L, Hernandez S, de Muga S, Lorente JA, Juanpere N, Esgueva R, et al. KLF6 and TP53 mutations are a rare event in prostate cancer: distinguishing between Taq polymerase artifacts and true mutations. Mod Pathol 2008;21:1470–1478.

    Article  CAS  PubMed  Google Scholar 

  9. Marquez F, Babio N, Bullo M, Salas-Salvado J. Evaluation of the safety and efficacy of hydroxycitric acid or Garcinia cambogia extracts in humans. Crit Rev Food Sci Nutr 2012;52:585–594.

    Article  PubMed  Google Scholar 

  10. Panthong A, Norkaew P, Kanjanapothi D, Taesotikul T, Anantachoke N, Reutrakul V. Anti-inflammatory, analgesic and antipyretic activities of the extract of gamboge from Garcinia hanburyi Hook f. J Ethnopharmacol 2007;111:335–340.

    Article  PubMed  Google Scholar 

  11. Zhang HZ, Kasibhatla S, Wang Y, Herich J, Guastella J, Tseng B, et al. Discovery, characterization and SAR of gambogic acid as a potent apoptosis inducer by a HTS assay. Bioorg Med Chem 2004;12:309–317.

    Article  PubMed  Google Scholar 

  12. Wu ZQ, Guo QL, You QD, Zhao L, Gu HY. Gambogic acid inhibits proliferation of human lung carcinoma SPC-A1 cells in vivo and in vitro and represses telomerase activity and telomerase reverse transcriptase mRNA expression in the cells. Biol Pharm Bull 2004;27:1769–1774.

    Article  CAS  PubMed  Google Scholar 

  13. Gu H, Rao S, Zhao J, Wang J, Mu R, Rong J, et al. Gambogic acid reduced bcl-2 expression via p53 in human breast MCF-7 cancer cells. J Cancer Res Clin Oncol 2009;135:1777–1782.

    Article  CAS  PubMed  Google Scholar 

  14. Lü L, Tang D, Wang L, Huang LQ, Jiang GS, Xiao XY, et al. Gambogic acid inhibits TNF-a induced invasion of human prostate cancer PC3 cells in vitro through PI3K/ Akt and NF-?B signaling pathways. Acta Pharmacol Sin 2012;33:531–541.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Prasad S, Pandey MK, Yadav VR, Aggarwal BB. Gambogic acid inhibits STAT3 phosphorylation through activation of protein tyrosine phosphatase SHP-1: potential role in proliferation and apoptosis. Cancer Prev Res (Phila) 2011;4:1084–1094.

    Article  CAS  Google Scholar 

  16. Abou-Kheir WG, Hynes PG, Martin PL, Pierce R, Kelly K. Characterizing the contribution of stem/progenitor cells to tumorigenesis in the PTEN-/-TP53-/- prostate cancer model. Stem Cells 2010;28:2129–2140.

    Article  CAS  PubMed  Google Scholar 

  17. Karthaus WR, Iaquinta PJ, Drost J, Gracanin A, van Boxtel R, Wongvipat J, et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 2014;159:163–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu YN, Abou-Kheir W, Yin JJ, Fang L, Hynes P, Casey O, et al. Critical and reciprocal regulation of KLF4 and SLUG in transforming growth factor beta-initiated prostate cancer epithelial-mesenchymal transition. Mol Cell Biol 2012;32:941–953.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Agarwal S, Hynes PG, Tillman HS, Lake R, Abou-Kheir WG, Fang L, et al. Identification of different classes of luminal progenitor cells within prostate tumors. Cell Rep 2015;13:2147–2158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee YR, Lei HY, Liu MT, Wang JR, Chen SH, Jiang-Shieh YF, et al. Autophagic machinery activated by dengue virus enhances virus replication. Virology 2008;374:240–248.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang HZ, Kasibhatla S, Wang Y, Herich J, Guastella J, Tseng B, et al. Characterization and SAR of gambogic acid as a potent apoptosis inducer by a HTS assay. Bioorg Med Chem 2004;12:309–317.

    Article  PubMed  Google Scholar 

  22. Chi Y, Zhan XK, Yu H, Xie GR, Wang ZZ, Xiao W, et al. An open-labeled, randomized, multicenter phase a study of gambogic acid injection for advanced malignant tumors. Chin Med J 2013;126:1642–1646.

    PubMed  Google Scholar 

  23. Ning R, Wang XP, Zhan YR, Qi Q, Huang XF, Hu G, et al. Gambogic acid potentiates clopidogrel-induced apoptosis and attenuates irinotecan-induced apoptosis through downregulating human carboxylesterase 1 and-2. Xenobiotica 2016;46:816–824.

    Article  CAS  PubMed  Google Scholar 

  24. Jang JH, Kim JY, Sung EG, Kim EA, Lee TJ. Gambogic acid induces apoptosis and sensitizes TRAIL-mediated apoptosis through downregulation of cFLIPL in renal carcinoma Caki cells. Int J Oncol 2016;48:376–384.

    Article  CAS  PubMed  Google Scholar 

  25. Thida M, Kim DW, Tran TT, Pham MQ, Lee H, Kim I, et al. Gambogic acid induces apoptotic cell death in T98G glioma cells. Bioorg Med Chem Lett 2016;26:1097–1101.

    Article  CAS  PubMed  Google Scholar 

  26. Phillips R. Innovation: organoids-a better model for PC. Nat Rev Urol 2014,11:604.

  27. Choi SY, Lin D, Gout PW, Collins CC, Xu Y, Wang Y. Lessons from patient-derived xenografts for better in vitro modeling of human cancer. Adv Drug Deliv Rev 2014;79:222–237.

    Article  PubMed  Google Scholar 

  28. Lawrence MG, Taylor RA, Toivanen R, Pedersen J, Norden S, Pook DW, et al. A preclinical xenograft model of PC using human tumors. Nat Protoc 2013;8:836–848.

    Article  CAS  PubMed  Google Scholar 

  29. Ritch CR, Cookson MS. Advances in the management of castration resistant PC. BMJ 2016;17:355.

    Google Scholar 

  30. Long JS, Ryan KM. New frontiers in promoting tumour cell death: targeting apoptosis, necroptosis and autophagy. Oncogene 2012;31:5045–5060.

    Article  CAS  PubMed  Google Scholar 

  31. Wang Y, Chen Y, Chen Z, Ke WJ, Qi LW, He J. Mechanism of gambogic acid-induced apoptosis in Raji cells. J Exp Hematol (Chin) 2009;17:88–91.

    Google Scholar 

  32. Zhong N, Jiang D, Zheng SY. Anticancer effect of gambogic acid in gastric cancer line SGC-7901. 2010 4th International Conference Bio-information Biomedicine Engineer IEEE, Genoa, Italy; 2010:1–6.

    Google Scholar 

  33. Nie F, Zhang X, Qi Q, Yang L, Yang Y, Liu W, et al. Reactive oxygen species accumulation contributes to gambogic acid induced apoptosis in human hepatoma SMMC-7721 cells. Toxicology 2009;260:60–67.

    Article  CAS  PubMed  Google Scholar 

  34. Li C, Qi Q, Lu N, Dai Q, Li F, Wang X, et al. Gambogic acid promotes apoptosis and resistance to metastatic potential inMDAMB-231 human breast carcinoma cells. Biochem Cell Bio 2012;90:718–730.

    Article  CAS  Google Scholar 

  35. Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG, Catez F, et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 2001;1:515–525.

    Article  CAS  PubMed  Google Scholar 

  36. Karbowski M, Lee YJ, Gaume B, Jeong SY, Frank S, Nechushtan A, et al. Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J Cell Biol 2002;159:931–938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lewis TS, Shapiro PS, Ahn NG, Adv. Signal transduction through MAP kinase cascades. Adv Cancer Res 1998;74:49–139.

    Article  CAS  PubMed  Google Scholar 

  38. Feng Z, Joos HJ, Vallan C, Mühlbauer R, Altermatt HJ, Jaggi R. Apoptosis during castration-induced regression of the prostate is Fos dependent. Oncogene 1998;17:2593–2600.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang X, Zhang L, Yang H, Huang X, Libermann TA, DeWolf WC, et al. c-Fos as a proapoptotic agent in TRAIL-induced apoptosis in PC cells. Cancer Res 2007;67:9425–9434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rebecca G, Nikki M, Simon J. ERK1/2, but not ERK5, is necessary and sufficient for phosphorylation and activation of c-Fos. Cellular Signalling 2009;21:969–977.

    Article  Google Scholar 

  41. Shankar E, Song K, Corum SL, Bane KL, Wang H, Kao HY, et al. A signaling network controlling androgenic repression of c-Fos protein in prostate adenocarcinoma cells. J Biol Chem 2016;291:5512–5526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-sheng Lin.

Additional information

Supported by an International Science and Technology Cooperation Program (No. 2013DFA32540), China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, H., Lu, Ly., Wang, Xq. et al. Gambogic Acid Induces Cell Apoptosis and Inhibits MAPK Pathway in PTEN−/−/p53−/− Prostate Cancer Cells In Vitro and Ex Vivo. Chin. J. Integr. Med. 24, 109–116 (2018). https://doi.org/10.1007/s11655-017-2410-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-017-2410-3

Keywords

Navigation