Skip to main content
Log in

Ginsenosides from stems and leaves of ginseng prevent ethanol-induced lipid accumulation in human L02 hepatocytes

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To investigate the effect of ginsenosides from stems and leaves of ginseng on ethanol-induced lipid deposition in human L02 hepatocytes.

Methods

L02 cells were exposed to ethanol for 36 h and treated with or without ginsenosides. The viability of L02 cells was evaluated by methylthiazolyldiphenyl-tetrazolium bromide assay and the triglyceride (TG) content was detected. Lipid droplets were determined by oil red O staining. Intracellular reactive oxygen species (ROS) production and the mitochondrial membrane potential were tested by flow cytometry. The ATP level was measured by reverse phase high performance liquid chromatography. The expression of cytochrome p450 2E1 (CYP2E1) and peroxisome proliferator-activated receptor α (PPARα) was detected by reverse transcriptase-polymerase chain reaction and Western blotting, respectively.

Results

Ethanol exposure resulted in the increase of TG level, lipid accumulation and ROS generation, and the decrease of mitochondrial membrane potential and ATP production in the cells. However, ginsenosides significantly reduced TG content (9.69±0.22 μg/mg protein vs. 4.93±0.49 μg/mg protein, P<0.01), and ROS formation (7254.8±385.7 vs. 5825.2±375.9, P<0.01). Meanwhile, improvements in mitochondrial membrane potential (10655.33±331.34 vs. 11129.52±262.35, P<0.05) and ATP level (1.20±0.18 nmol/mg protein vs. 2.53±0.25 nmol/mg protein, P<0.01) were observed by treatment with ginsenosides. Furthermore, ginsenosides could down-regulate CYP2E1 expression (P<0.01) and upregulate PPARα expression (P<0.01) in ethanol-treated cells.

Conclusions

Ginsenosides could prevent ethanol-induced hepatocyte steatosis in vitro related to the inhibition of oxidative stress and the improvement of mitochondrial function. In addition, the modulation of CYP2E1 and PPARα expression may also play an important role in the protective effect of ginsenosides against lipid accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adachi M, Ishii H. Role of mitochondria in alcoholic liver injury. Free Radic Biol Med 2002;32:487–491.

    Article  CAS  PubMed  Google Scholar 

  2. Dupont I, Lucas D, Clot P, Menez C, Albano E. Cytochrome P4502E1 inducibility and hydroxyethyl radical formation among alcoholics. J Hepatol 1998;28:564–571.

    Article  CAS  PubMed  Google Scholar 

  3. Das SK, Vasudevan DM. Alcohol-induced oxidative stress. Life Sci 2007;81:177–187.

    Article  CAS  PubMed  Google Scholar 

  4. Lu Y, Cederbaum AI. CYP2E1 and oxidative liver injury by alcohol. Free Radic Biol Med 2008;44:723–738.

    Article  CAS  PubMed  Google Scholar 

  5. Lu Y, Zhuge J, Wang X, Bai J, Cederbaum AI. Cytochrome P4502E1 contributes to ethanol-induced fatty liver in mice. Hepatology 2008;47:1483–1494.

    Article  CAS  PubMed  Google Scholar 

  6. Shen Z, Liang X, Rogers CQ, Rideout D, You M. Involvement of adiponectin-SIRT1-AMPK signaling in the protective action of rosiglitazone against alcoholic fatty liver in mice. Am J Physiol Gastrointest Liver Physiol 2010;298:G364-G374.

    Google Scholar 

  7. Fischer M, You M, Matsumoto M, Crabb DW. Peroxisome proliferators-activated receptor α (PPAR alpha) agonist treatment reverses PPARa dysfunction and abnormalities in hepatic lipid metabolism in ethanol fed mice. J Biol Chem 2003;278:27997–28004.

    Article  CAS  PubMed  Google Scholar 

  8. Crabb DW, Galli A, Fischer M, You M. Molecular mechanisms of alcoholic fatty liver: role of peroxisome proliferator-activated receptor α. Alcohol 2004;34:35–38.

    Article  CAS  PubMed  Google Scholar 

  9. Xiang YZ, Shang HC, Gao XM, Zhang BL. A comparison of the ancient use of ginseng in traditional Chinese medicine with modern pharmacological experiments and clinical trials. Phytother Res 2008;22:851–858.

    Article  PubMed  Google Scholar 

  10. Kitts DD, Wijewickreme AN, Hu C. Antioxidant properties of a North American ginseng extract. Mol Cell Biochem 2000;203:1–10.

    Article  CAS  PubMed  Google Scholar 

  11. Karu N, Reifen R, Kerem Z. Weight gain reduction in mice fed panax ginseng saponin, a pancreatic lipase inhibitor. J Agric Food Chem 2007;55:2824–2828.

    Article  CAS  PubMed  Google Scholar 

  12. Park EK, Choo MK, Han MJ, Kim DH. Ginsenoside Rh1 possesses antiallergic and anti-inflammatory activities. Int Arch Aller Immunol 2004;133:113–120.

    Article  CAS  Google Scholar 

  13. Kang KS, Yamabe N, Kima HY, Okamotob T, Sei Y, Yokoza-wa T. Increase in the free radical scavenging activities of American ginseng by heat processing and its safety evaluation. J Ethnopharmacol 2007;113:225–232.

    Article  CAS  PubMed  Google Scholar 

  14. Hu CF, Lu DX, Sun LP, Qin L. The effect of ginsenosides of stem and leaf on mouse fatty liver and its mechanism. Chin Pharmacol Bull 2009;25:108–112.

    Google Scholar 

  15. Liu W, Zheng Y, Han L, Wang H, Saito M, Ling M, et al. Saponins (Ginsenosides) from stems and leaves of Panax quinquefolium prevented high-fat diet-induced obesity in mice. Phytomedicine 2008;15:1140–1145.

    Article  CAS  PubMed  Google Scholar 

  16. Tilg H, Moschen AR, Kaneider NC. Pathways of liver injury in alcoholic liver disease. J Hepatol 2011;55:1159–1161.

    Article  PubMed  Google Scholar 

  17. Manzo-Avaloss A, Saavedra-Molina A. Cellular and mitochondrial effects of alcohol consumption. Int J Environ Res Public Health 2010;7:4281–4304.

    Article  Google Scholar 

  18. Moon KH, Hood BL, Kim BJ, Hardwick JP, Conrads TP, Veenstra TD, et al. Inactivation of oxidized and S-nitrosylated mitochondrial proteins in alcoholic fatty liver of rats. Hepatology 2006;44:1218–1230.

    Article  CAS  PubMed  Google Scholar 

  19. Venkatraman A, Landar A, Davis AJ, Chamlee L, Sanderson T, Kim H, et al. Modification of the mitochondrial proteome in response to the stress of ethanol-dependent hepatotoxicity. J Biol Chem 2004;279:22092–22101.

    Article  CAS  PubMed  Google Scholar 

  20. Kim BJ, Hood BL, Aragon RA, Hardwick JP, Conrads TP, Veenstra TD, et al. Increased oxidation and degradation of cytosolic proteins in alcohol-exposed mouse liver and hepatoma cells. Proteomics 2006;6:1250–1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Albano E. Oxidative mechanisms in the pathogenesis of alcoholic liver disease. Mol Aspects Med 2008;29:9–16.

    Article  CAS  PubMed  Google Scholar 

  22. Duchen MR, Szabadkai G. Roles of mitochondria in human disease. Essays Biochem 2010;47:115–137.

    Article  CAS  PubMed  Google Scholar 

  23. Murphy MP. How mitochondria produce reactive oxygen species? Biochem J 2009;417:1–13.

    Article  CAS  PubMed  Google Scholar 

  24. Cederbaum AI. Role of CYP2E1 in ethanol-induced oxidant stress, fatty liver and hepatotoxicity. Dig Dis 2010;28:802–811.

    Article  PubMed  Google Scholar 

  25. Vasiliou V, Ziegler TL, Bludeau P, Petersen DR, Gonzalez FJ, Deitrich RA. CYP2E1 and catalase influence ethanol sensitivity in the central nervous system. Pharmacogenet Genom 2006;16:51–58.

    Article  CAS  Google Scholar 

  26. Wu D, Wang X, Zhou R, Yang L, Cederbaum AI. Alcohol steatosis and cytotoxicity: the role of cytochrome P4502E1 and autophagy. Free Radic Biol Med 2012;53:1346–1357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Moriya T, Naito H, Ito Y, Nakajima T. Hypothesis of seven balances: molecular mechanisms behind alcoholic liver diseases and association with PPARalpha. J Occup Health 2009;51:391–403.

    Article  CAS  PubMed  Google Scholar 

  28. Hashimoto T, Cook WS, Qi C, Yeldandi AV, Reddy JK, Rao MS. Defect in peroxisome proliferator-activated receptor α-inducible fatty acid oxidation determines the severity of hepatic steatosis in response to fasting. J Biol Chem 2000;275:28918–28328.

    Article  CAS  PubMed  Google Scholar 

  29. Ip E, Farrell GC, Robertson G, Hall P, Kirsch R, Leclercq I. Central role of PPARα-dependent hepatic lipid turnover in dietary steatohepatitis in mice. Hepatology 2003;38:123–132. (Received April 1, 2014; First Online September 10, 2016)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-xiang Lu.

Additional information

Supported by Natural Science Foundation of Guangdong Province, China (No. S2012010008161)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Cf., Sun, Lp., Yang, Qh. et al. Ginsenosides from stems and leaves of ginseng prevent ethanol-induced lipid accumulation in human L02 hepatocytes. Chin. J. Integr. Med. 23, 438–444 (2017). https://doi.org/10.1007/s11655-016-2617-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-016-2617-8

Keywords

Navigation