Skip to main content

Advertisement

Log in

Cyclovirobuxinum D alleviates cardiac hypertrophy in hyperthyroid rats by preventing apoptosis of cardiac cells and inhibiting the p38 mitogen-activated protein kinase signaling pathway

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To investigate the underlying mechanisms of cyclovirobuxinum D (Cvb-D) on alleviating cardiac hypertrophy in rats.

Methods

Sprague-Dawley rats were randomly divided into 5 groups: control group; levothyroxine-induced cardiac hypertrophy group (model); levothyroxine-induced cardiac hypertrophy + Cvb-D group (Cvb-D); levothyroxine-induced cardiac hypertrophy + captopril group (captopril); levothyroxine-induced cardiac hypertrophy + SB203580 group (SB203580), n=10 for each group. Rats were daily administered the respective drugs continuously for14 days by gastric gavage. A rat model of cardiac hypertrophy was established by intraperitoneal injection of levothyroxine to investigate whether Cvb-D protects against cardiac hypertrophy by inhibiting the p38 mitogen-activated protein kinase (MAPK) signaling pathway and preventing apoptosis of cardiac cells.

Results

Treatment with Cvb-D significantly deceased left ventricle hypertrophy, improved the histopathology, hemodynamic conditions, and cardiac function in rats with cardiac hypertrophy. Compared with the normal control group, in rats with cardiac hypertrophy, expression of bax in the heart and phospho-p38 MAPK protein levels were significantly up-regulated (P<0.01 or 0.05), whereas the bcl-2 protein level was down-regulated (P<0.01). In contrast, Cvb-D treatment reversed the changes in bax and phospho-p38 MAPK protein levels but increased the bcl-2 protein level (P<0.01 or 0.05), and these effects were similar to those of captopril and SB203580 (a specific p38MAPK inhibitor) treatment. Furthermore, both Cvb-D, captopril and SB203580 reduced mRNA expression of p38α, p38β, c-fos, and c-jun mRNA, and Cvb-D had a stronger effect (P<0.01).

Conclusion

These results demonstrate that Cvb-D protects against cardiac hypertrophy, which is possibly mediated by prevention of cardiac cell apoptosis and inhibition of the p38MAPK signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee D, Goldberg A. Atrogin1/MAFbx: what atrophy, hypertrophy, and cardiac failure have in common. Circ Res 2011;109:123–126.

    Article  CAS  PubMed  Google Scholar 

  2. Diwan A, Dorn GW 2nd. Decompensation of cardiac hypertrophy: cellular mechanisms and novel therapeutic targets. Physiology (Bethesda) 2007;22:56–64.

    Article  CAS  Google Scholar 

  3. Maulik SK, Kumar S. Oxidative stress and cardiac hypertrophy: a review. Toxicol Mechan Methods 2012;22:359–366.

    Article  CAS  Google Scholar 

  4. Tousson E, Ali EM, Ibrahim W, Ashraf RM. Histopathological and immunohistochemical alterations in rat heart after thyroidectomy and the role of hemin and ketoconazole in treatment. Biomed Pharm 2012;66:627–632.

    Article  CAS  Google Scholar 

  5. Nayak B, Burman K. Thyrotoxicosis and thyroid storm. Endocrinol Metabol Clin North Am 2006;35:663–686.

    Article  CAS  Google Scholar 

  6. Klein I, Danzi S. Thyroid disease and the heart. Circulation 2007;116:1725–1735.

    Article  PubMed  Google Scholar 

  7. Wang S, Han HM, Pan ZW, Hang PZ, Sun LH, Jiang YN, et al. Choline inhibits angiotensin II-induced cardiac hypertrophy by intracellular calcium signal and p38 MAPK pathway. Naunyn-Schmiedeberg's Arch Pharmacol 2012;385:823–831.

    Article  CAS  Google Scholar 

  8. Perez Lopez I, Cariolato L, Maric D, Gillet L, Abriel H, Diviani D. A-kinase anchoring protein Lbc coordinates a p38 activating signaling complex controlling compensatory cardiac hypertrophy. Mol Cell Biol 2013;33:2903–2917.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang Y, Huang S, Sah VP, Ross J, Jr., Brown JH, Han J, et al. Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. Biol Chem 1998;273:2161–2168.

    Article  CAS  Google Scholar 

  10. National Pharmacopoeia Committee, ed. Pharmacopoeia of People's Republic of China. Beijing: Chemical Industry Press; 2010.

    Google Scholar 

  11. Yu B, Fang TH, Lu GH, Xu HQ, Lu JF. Beneficial effect of cyclovirobuxine D on heart failure rats following myocardial infarction. Fitoterapia 2011;82:868–877.

    Article  CAS  PubMed  Google Scholar 

  12. Zhou Y, Wu JB, Liu AJ, Chen XJ, Pan LX, Zhou JY. Preliminary study protective effect of cyclovirobuxinum D on cardiac hypertrophy induced by isoprenaline in mice. China Pharm (Chin) 2011;14:919–921.

    CAS  Google Scholar 

  13. Siu CW, Yeung CY, Lau CP, Kung AW, Tse HF. Incidence, clinical characteristics and outcome of congestive heart failure as the initial presentation in patients with primary hyperthyroidism. Heart 2007;93:483–487.

    Article  PubMed  Google Scholar 

  14. Wang YY, Jiao B, Guo WG, Che HL, Yu ZB. Excessive thyroxine enhances susceptibility to apoptosis and decreases contractility of cardiomyocytes. Mol Cell Endocrinol 2010;320:67–75.

    Article  CAS  PubMed  Google Scholar 

  15. Ker J. Thyroxine and cardiac electrophysiology—a forgotten physiological duo? Thyroid Res 2012;5:8.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ching GW, Franklyn JA, Stallard TJ, Daykin J, Sheppard MC, Gammage MD. Cardiac hypertrophy as a result of long-term thyroxine therapy and thyrotoxicosis. Heart 1996;75:363–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carneiro-Ramos MS, Diniz GP, Nadu AP, Almeida J, Vieira RL, Santos RA, et al. Blockage of angiotensin II type 2 receptor prevents thyroxine-mediated cardiac hypertrophy by blocking Akt activation. Basic Res Cardiol 2010;105:325–335.

    Article  CAS  PubMed  Google Scholar 

  18. Hu D, Liu X, Wang Y, Chen S. Cyclovirobuxine D ameliorates acute myocardial ischemia by KATP channel opening, nitric oxide release and anti-thrombosis. Eur J Pharmacol 2007;569:103–109.

    Article  CAS  PubMed  Google Scholar 

  19. Yu B, Ruan M, Zhou L, Xu L, Fang T. Influence of cyclovirobuxine D on intracellular Ca2+ regulation and the expression of the calcium cycling proteins in rat myocytes. Fitoterapia 2012;83:1653–1665.

    Article  CAS  PubMed  Google Scholar 

  20. Hasegawa K, Iwai-Kanai E, Sasayama S. Neurohormonal regulation of myocardial cell apoptosis during the development of heart failure. J Cell Physiol 2001;186:11–18.

    Article  CAS  PubMed  Google Scholar 

  21. Lu F, Xing J, Zhang X, Dong S, Zhao Y, Wang L, et al. Exogenous hydrogen sulfide prevents cardiomyocyte apoptosis from cardiac hypertrophy induced by isoproterenol. Mol Cell Biochem 2013;381:41–50.

    Article  CAS  PubMed  Google Scholar 

  22. Hirota H, Chen J, Betz UA, Rajewsky K, Gu Y, Ross J Jr., et al. Loss of a GP130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell 1999;97:189–198.

    Article  CAS  PubMed  Google Scholar 

  23. Mayorga M, Bahi N, Ballester M, Comella JX, Sanchis D. Bcl-2 is a key factor for cardiac fibroblast resistance to programmed cell death. J Biol Chem 2004;279:34882–34889.

    Article  CAS  PubMed  Google Scholar 

  24. Yu RA, Yang CF, Chen XM. DNA damage, apoptosis and c-myc, c-fos, and c-jun overexpression induced by selenium in rat hepatocytes. Biomed Environ Sci 2006;19:197–204.

    CAS  PubMed  Google Scholar 

  25. Errico MC, Felicetti F, Bottero L, Mattia G, Boe A, Felli N, et al. The abrogation of the HOXB7/PBX2 complex induces apoptosis in melanoma through the miR-221&222-c-Fos pathway. Int J Cancer 2013;133:879–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Asim M, Chaturvedi R, Hoge S, Lewis ND, Singh K, Barry DP, et al. Helicobacter pylori induces ERK-dependent formation of a phospho-c-Fos c-Jun activator protein-1 complex that causes apoptosis in macrophages. J Biol Chem 2010;285:20343–20357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pilz S, Scharnagl H, Tiran B, Wellnitz B, Seelhorst U, Boehm BO, et al. Elevated plasma free fatty acids predict sudden cardiac death: a 6.85-year follow-up of 3315 patients after coronary angiography. Eur Heart J 2007;28:2763–2769.

    Article  CAS  PubMed  Google Scholar 

  28. Luo H, Guo H, Xiao J, Xue Z. Circadian variations of plasma SOD and MDA in health subjects. J West China Univ Med Sci (Chin) 1997;28:401–403.

    CAS  Google Scholar 

  29. Weston CR, Davis RJ. Signal transduction: signaling specificity—a complex affair. Science 2001;292:2439–2440.

    Article  CAS  PubMed  Google Scholar 

  30. Kyriakis JM. Life-or-death decisions. Nature 2001;414:265–266.

    Article  CAS  PubMed  Google Scholar 

  31. Liang Q, Elson AC, Gerdes AM. p38 MAP kinase activity is correlated with angiotensin II type 1 receptor blockerinduced left ventricular reverse remodeling in spontaneously hypertensive heart failure rats. J Cardiac Fail 2006;12:479–486.

    Article  CAS  Google Scholar 

  32. Bao W, Behm DJ, Nerurkar SS, Ao Z, Bentley R, Mirabile RC, et al. Effects of p38 MAPK Inhibitor on angiotensin II-dependent hypertension, organ damage, and superoxide anion production. J Cardiovascul Pharmacol 2007;49:362–368.

    Article  CAS  Google Scholar 

  33. Streicher JM, Ren S, Herschman H, Wang Y. MAPK-activated protein kinase-2 in cardiac hypertrophy and cyclooxygenase-2 regulation in heart. Circul Res 2010;106:1434–1443.

    Article  CAS  Google Scholar 

  34. Dickhout JG, Carlisle RE, Austin RC. Interrelationship between cardiac hypertrophy, heart failure, and chronic kidney disease: endoplasmic reticulum stress as a mediator of pathogenesis. Circul Res 2011;108:629–642.

    Article  CAS  Google Scholar 

  35. Dorn GW, 2nd. Apoptotic and non-apoptotic programmed cardiomyocyte death in ventricular remodelling. Cardiovascul Res 2009;81:465–473.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. LIU Ai-jun (School of Basic Medical Sciences, Guangzhou University of Chinese Medicine) for providing guidance in heart pathology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiu-yao Zhou.

Additional information

Supported by the State Administration of Traditional Chinese Medicine of Guangdong Province, China (No. 2009231)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Jb., Zhou, Y., Liang, Cl. et al. Cyclovirobuxinum D alleviates cardiac hypertrophy in hyperthyroid rats by preventing apoptosis of cardiac cells and inhibiting the p38 mitogen-activated protein kinase signaling pathway. Chin. J. Integr. Med. 23, 770–778 (2017). https://doi.org/10.1007/s11655-015-2299-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-015-2299-7

Keywords

Navigation