Advertisement

Chinese Journal of Integrative Medicine

, Volume 21, Issue 5, pp 361–368 | Cite as

L-tetrahydropalamatine inhibits tumor necrosis factor-α-induced monocyte-endothelial cell adhesion through downregulation of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 involving suppression of nuclear factor-κ B signaling pathway

  • Bin-rui Yang (杨彬睿)
  • Nan Yu (于 楠)
  • Yan-hui Deng (邓艳辉)
  • Pui Man Hoi (许贝文)
  • Bin Yang (杨 斌)
  • Guang-yu Liu (刘光宇)
  • Wei-hong Cong (丛伟红)
  • Simon Ming-Yuen Lee (李铭源)
Original Article

Abstract

Objective

To investigate whether I-tetrahydropalmatine (I-THP), an alkaloid mainly present in Corydalis family, could ameliorate early vascular inflammatory responses in atherosclerotic processes.

Methods

Fluorescently labeled monocytes were co-incubated with human umbilical vein endothelial cells (HUVECs), which were pretreated with I-THP and then simulated with tumor necrosis factor (TNF)-α in absence of I-THP to determine if I-THP could reduce thecytokine-induced adhesion of monocytes to HUVECs. Then I-THP were further studied the underlying mechanisms through observing the transcriptional and translational level of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) and the nuclear translocation of nuclear factor (NF)-κ B in HUVECs.

Results

L-THP could block TNF-α-induced adhesion of monocytes to HUVECs and could significantly inhibited the expression of ICAM-1 and VCAM-1 on cell surface by 31% and 36% at 30 μ mol/L. L-THP pretreatment could also markedly reduce transcriptional and translational level of VCAM-1 as well as mildly reduce the total protein and mRNA expression levels of ICAM-1. Furthermore, I-THP attenuated TNF-α-stimulated NF-κ B nuclear translocation.

Conclusion

These results provide evidences supporting that I-THP could be a promising compound in the prevention and treatment of the early vascular inflammatory reaction in atherosclerosis by inhibiting monocyte adhesion to vascular endothelial cell through downregulating ICAM-1 and VCAM-1 in vascular endothelial cell based on suppressing NF-κ B.

Keywords

I-tetrahydropalmatine atherosclerosis cell adhesion molecules tumor necrosis factor-α nuclear factor-κ B 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Iwata H, Nagai R. Novel immune signals and atherosclerosis. Curr Atheroscler Rep 2012;14:484–490.CrossRefPubMedGoogle Scholar
  2. 2.
    WHO. World Health Organization. Cardiovascular diseases (CVDs). Available from: http: //www.who.int/mediacentre/ factsheets/fs317/en/. 2013.Google Scholar
  3. 3.
    Narverud I, Retterstol K, Iversen PO, Halvorsen B, Ueland T, Ulven SM, et al. Markers of atherosclerotic development in children with familial hypercholesterolemia: a literature review. Atherosclerosis 2014;235:299–309.CrossRefPubMedGoogle Scholar
  4. 4.
    Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature 2011;473:317–325.CrossRefPubMedGoogle Scholar
  5. 5.
    Schulz C, Massberg S. Atherosclerosis-Multiple Pathways to Lesional Macrophages. Sci Transl Med 2014;6:239ps232.CrossRefGoogle Scholar
  6. 6.
    Springer TA. Adhesion receptors of the immune system. Nature 1990;346:425–434.CrossRefPubMedGoogle Scholar
  7. 7.
    Davies MJ, Gordon JL, Gearing AJ, Pigott R, Woolf N, Katz D, et al. The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and E-selectin in human atherosclerosis. J Pathol 1993;171:223–229.CrossRefPubMedGoogle Scholar
  8. 8.
    Blann AD, McCollum CN. Circulating endothelial cell/ leukocyte adhesion molecules in atherosclerosis. Thromb Haemost 1994;72:151–154.PubMedGoogle Scholar
  9. 9.
    Mulvihill NT, Foley JB, Crean P, Walsh M. Prediction of cardiovascular risk using soluble cell adhesion molecules. Eur Heart J 2002;23:1569–1574.CrossRefPubMedGoogle Scholar
  10. 10.
    Ridker PM, Lüscher TF. Anti-inflammatory therapies for cardiovascular disease. Eur Heart J 2014;35:1782–1791.CrossRefPubMedGoogle Scholar
  11. 11.
    Hu JY, Jin GZ. Arcuate nucleus of hypothalamus involved in analgesic action of l-THP. Acta Pharmacol Sin 2000;21:439–444.PubMedGoogle Scholar
  12. 12.
    Jin GZ, Zhu ZT, Fu Y. (-)-Stepholidine: a potential novel antipsychotic drug with dual D1 receptor agonist and D2 receptor antagonist actions. Trends Pharmacol Sci 2002;23:4–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Lee B, Sur B, Yeom M, Shim I, Lee H, Hahm DH. L-tetrahydropalmatine ameliorates development of anxiety and depression-related symptoms induced by single prolonged stress in rats. Biomol Ther (Seoul) 2014;22:213–222.CrossRefGoogle Scholar
  14. 14.
    Chu H, Jin G, Friedman E, Zhen X. Recent development in studies of tetrahydroprotoberberines: mechanism in antinociception and drug addiction. Cell Mol Neurobiol 2008;28:491–499.CrossRefPubMedGoogle Scholar
  15. 15.
    Wang JB, Mantsch JR. l-tetrahydropalamatine: a potential new medication for the treatment of cocaine addiction. Future Med Chem 2012;4:177–186.CrossRefPubMedGoogle Scholar
  16. 16.
    Huang K, Dai GZ, Li XH, Fan Q, Cheng L, Feng YB, et al. Blocking L-calcium current by l-tetrahydropalmatine in single ventricular myocyte of guinea pigs. Acta Pharmacol Sin 1999;20:907–911.Google Scholar
  17. 17.
    Zeng Q, Zhu W, Cao L, Liu F. Effects of L-THP on Ca2+ overload of cultured rat cardiomyocytes during hypoxia and reoxygenation. J Tongji Med Univ 2000;20:294–296.CrossRefPubMedGoogle Scholar
  18. 18.
    Yang G, Wang P, Tang Y, Jiang C, Wang D. Effects of L-tetrahydropalmatine on energy metabolism, endothelin-1 and NO during acute cerebral ischemia-reperfusion of rats. J Tongji Med Univ 1999;19:285–287.CrossRefPubMedGoogle Scholar
  19. 19.
    Liu B, Yang G. Effects of l-tetrahydropalmatine on the expressions of bcl-2 and bax in rat after acute global cerebral ischemia and reperfusion. J Huazhong Univ Sci Technolog (Med Sci) 2004;24:445–448.CrossRefGoogle Scholar
  20. 20.
    Han Y, Zhang W, Tang Y, Bai W, Yang F, Xie L, et al. I-Tetrahydropalmatine, an active component of Corydalis yanhusuo W.T. Wang, protects against myocardial ischaemiareperfusion injury in rats. PLoS One 2012;7:e38627.CrossRefGoogle Scholar
  21. 21.
    Yang G, Jiang C, Tang Y, Wang P. Effects of l-tetrahydropalmatine on neuron apoptosis during acute cerebral ischemia-reperfusion of rats. J Tongji Med Univ 2000;20:106–108.CrossRefPubMedGoogle Scholar
  22. 22.
    Liu YL, Yan LD, Zhou PL, Wu CF, Gong ZH. Levotetrahydropalmatine attenuates oxycodone-induced conditioned place preference in rats. Eur J Pharmacol 2009;602:321–327.CrossRefPubMedGoogle Scholar
  23. 23.
    Wu L, Ling H, Li L, Jiang L, He M. Beneficial effects of the extract from Corydalis yanhusuo in rats with heart failure following myocardial infarction. J Pharm Pharmacol 2007;59:695–701.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang ZM, Jiang B, Zheng XX. Effect of l-tetrahydropalmatine on expression of adhesion molecules induced by lipopolysaccharides in human umbilical vein endothelium cell. China J Chin Mater Med (Chin) 2005;30:861–864.Google Scholar
  25. 25.
    Anderson L, Seilhamer J. A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 1997;18:533–537.CrossRefPubMedGoogle Scholar
  26. 26.
    Tew KD, Monks A, Barone L, Rosser D, Akerman G, Montali JA, et al. Glutathione-associated enzymes in the human cell lines of the National Cancer Institute Drug Screening Program. Mol Pharmacol 1996;50:149–159.PubMedGoogle Scholar
  27. 27.
    Pradet-Balade B, Boulmé F, Beug H, Müllner EW, Garcia-Sanz JA. Translation control: bridging the gap between genomics and proteomics? Trends Biochem Sci 2001;26:225–229.CrossRefPubMedGoogle Scholar
  28. 28.
    Pigott R, Dillon LP, Hemingway IH, Gearing AJ. Soluble forms of E-selectin, ICAM-1 and VCAM-1 are present in the supernatants of cytokine activated cultured endothelial cells. Biochem Biophys Res Commun 1992;187:584–589.CrossRefPubMedGoogle Scholar
  29. 29.
    Shephard RJ. Adhesion molecules, catecholamines and leucocyte redistribution during and following exercise. Sports Med 2003;33:261–284.CrossRefPubMedGoogle Scholar
  30. 30.
    Shingu M, Hashimoto M, Ezaki I, Nobunaga M. Effect of cytokine-induced soluble ICAM-1 from human synovial cells on synovial cell-lymphocyte adhesion. Clin Exp Immunol 1994;98:46–51.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Cybulsky MI, Gimbrone M. Endothelial Cell Dysfunction. In Simionescu N and Simionescu M, eds. New York: Plenum Press; 1992:129–140.Google Scholar
  32. 32.
    Baeuerle PA. IkappaB-NF-kappaB structures: at the interface of inflammation control. Cell 1998;95:729–731.CrossRefPubMedGoogle Scholar
  33. 33.
    Iademarco MF, McQuillan JJ, Rosen GD, Dean DC. Characterization of the promoter for vascular cell adhesion molecule-1 (VCAM-1). J Biol Chem 1992;267:16323–16329.PubMedGoogle Scholar
  34. 34.
    Neish AS, Williams AJ, Palmer HJ, Whitley MZ, Collins T. Functional analysis of the human vascular cell adhesion molecule 1 promoter. J Exp Med 1992;176:1583–1593.CrossRefPubMedGoogle Scholar

Copyright information

© Chinese Association of the Integration of Traditional and Western Medicine and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Bin-rui Yang (杨彬睿)
    • 1
  • Nan Yu (于 楠)
    • 1
  • Yan-hui Deng (邓艳辉)
    • 1
  • Pui Man Hoi (许贝文)
    • 1
  • Bin Yang (杨 斌)
    • 2
  • Guang-yu Liu (刘光宇)
    • 1
  • Wei-hong Cong (丛伟红)
    • 2
  • Simon Ming-Yuen Lee (李铭源)
    • 1
  1. 1.State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacaoChina
  2. 2.Laboratory of Cardiovascular Diseases, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina

Personalised recommendations