Chinese Journal of Integrative Medicine

, Volume 21, Issue 5, pp 361–368 | Cite as

L-tetrahydropalamatine inhibits tumor necrosis factor-α-induced monocyte-endothelial cell adhesion through downregulation of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 involving suppression of nuclear factor-κ B signaling pathway

  • Bin-rui Yang (杨彬睿)
  • Nan Yu (于 楠)
  • Yan-hui Deng (邓艳辉)
  • Pui Man Hoi (许贝文)
  • Bin Yang (杨 斌)
  • Guang-yu Liu (刘光宇)
  • Wei-hong Cong (丛伟红)
  • Simon Ming-Yuen Lee (李铭源)
Original Article



To investigate whether I-tetrahydropalmatine (I-THP), an alkaloid mainly present in Corydalis family, could ameliorate early vascular inflammatory responses in atherosclerotic processes.


Fluorescently labeled monocytes were co-incubated with human umbilical vein endothelial cells (HUVECs), which were pretreated with I-THP and then simulated with tumor necrosis factor (TNF)-α in absence of I-THP to determine if I-THP could reduce thecytokine-induced adhesion of monocytes to HUVECs. Then I-THP were further studied the underlying mechanisms through observing the transcriptional and translational level of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) and the nuclear translocation of nuclear factor (NF)-κ B in HUVECs.


L-THP could block TNF-α-induced adhesion of monocytes to HUVECs and could significantly inhibited the expression of ICAM-1 and VCAM-1 on cell surface by 31% and 36% at 30 μ mol/L. L-THP pretreatment could also markedly reduce transcriptional and translational level of VCAM-1 as well as mildly reduce the total protein and mRNA expression levels of ICAM-1. Furthermore, I-THP attenuated TNF-α-stimulated NF-κ B nuclear translocation.


These results provide evidences supporting that I-THP could be a promising compound in the prevention and treatment of the early vascular inflammatory reaction in atherosclerosis by inhibiting monocyte adhesion to vascular endothelial cell through downregulating ICAM-1 and VCAM-1 in vascular endothelial cell based on suppressing NF-κ B.


I-tetrahydropalmatine atherosclerosis cell adhesion molecules tumor necrosis factor-α nuclear factor-κ B 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Iwata H, Nagai R. Novel immune signals and atherosclerosis. Curr Atheroscler Rep 2012;14:484–490.CrossRefPubMedGoogle Scholar
  2. 2.
    WHO. World Health Organization. Cardiovascular diseases (CVDs). Available from: http: // factsheets/fs317/en/. 2013.Google Scholar
  3. 3.
    Narverud I, Retterstol K, Iversen PO, Halvorsen B, Ueland T, Ulven SM, et al. Markers of atherosclerotic development in children with familial hypercholesterolemia: a literature review. Atherosclerosis 2014;235:299–309.CrossRefPubMedGoogle Scholar
  4. 4.
    Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature 2011;473:317–325.CrossRefPubMedGoogle Scholar
  5. 5.
    Schulz C, Massberg S. Atherosclerosis-Multiple Pathways to Lesional Macrophages. Sci Transl Med 2014;6:239ps232.CrossRefGoogle Scholar
  6. 6.
    Springer TA. Adhesion receptors of the immune system. Nature 1990;346:425–434.CrossRefPubMedGoogle Scholar
  7. 7.
    Davies MJ, Gordon JL, Gearing AJ, Pigott R, Woolf N, Katz D, et al. The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and E-selectin in human atherosclerosis. J Pathol 1993;171:223–229.CrossRefPubMedGoogle Scholar
  8. 8.
    Blann AD, McCollum CN. Circulating endothelial cell/ leukocyte adhesion molecules in atherosclerosis. Thromb Haemost 1994;72:151–154.PubMedGoogle Scholar
  9. 9.
    Mulvihill NT, Foley JB, Crean P, Walsh M. Prediction of cardiovascular risk using soluble cell adhesion molecules. Eur Heart J 2002;23:1569–1574.CrossRefPubMedGoogle Scholar
  10. 10.
    Ridker PM, Lüscher TF. Anti-inflammatory therapies for cardiovascular disease. Eur Heart J 2014;35:1782–1791.CrossRefPubMedGoogle Scholar
  11. 11.
    Hu JY, Jin GZ. Arcuate nucleus of hypothalamus involved in analgesic action of l-THP. Acta Pharmacol Sin 2000;21:439–444.PubMedGoogle Scholar
  12. 12.
    Jin GZ, Zhu ZT, Fu Y. (-)-Stepholidine: a potential novel antipsychotic drug with dual D1 receptor agonist and D2 receptor antagonist actions. Trends Pharmacol Sci 2002;23:4–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Lee B, Sur B, Yeom M, Shim I, Lee H, Hahm DH. L-tetrahydropalmatine ameliorates development of anxiety and depression-related symptoms induced by single prolonged stress in rats. Biomol Ther (Seoul) 2014;22:213–222.CrossRefGoogle Scholar
  14. 14.
    Chu H, Jin G, Friedman E, Zhen X. Recent development in studies of tetrahydroprotoberberines: mechanism in antinociception and drug addiction. Cell Mol Neurobiol 2008;28:491–499.CrossRefPubMedGoogle Scholar
  15. 15.
    Wang JB, Mantsch JR. l-tetrahydropalamatine: a potential new medication for the treatment of cocaine addiction. Future Med Chem 2012;4:177–186.CrossRefPubMedGoogle Scholar
  16. 16.
    Huang K, Dai GZ, Li XH, Fan Q, Cheng L, Feng YB, et al. Blocking L-calcium current by l-tetrahydropalmatine in single ventricular myocyte of guinea pigs. Acta Pharmacol Sin 1999;20:907–911.Google Scholar
  17. 17.
    Zeng Q, Zhu W, Cao L, Liu F. Effects of L-THP on Ca2+ overload of cultured rat cardiomyocytes during hypoxia and reoxygenation. J Tongji Med Univ 2000;20:294–296.CrossRefPubMedGoogle Scholar
  18. 18.
    Yang G, Wang P, Tang Y, Jiang C, Wang D. Effects of L-tetrahydropalmatine on energy metabolism, endothelin-1 and NO during acute cerebral ischemia-reperfusion of rats. J Tongji Med Univ 1999;19:285–287.CrossRefPubMedGoogle Scholar
  19. 19.
    Liu B, Yang G. Effects of l-tetrahydropalmatine on the expressions of bcl-2 and bax in rat after acute global cerebral ischemia and reperfusion. J Huazhong Univ Sci Technolog (Med Sci) 2004;24:445–448.CrossRefGoogle Scholar
  20. 20.
    Han Y, Zhang W, Tang Y, Bai W, Yang F, Xie L, et al. I-Tetrahydropalmatine, an active component of Corydalis yanhusuo W.T. Wang, protects against myocardial ischaemiareperfusion injury in rats. PLoS One 2012;7:e38627.CrossRefGoogle Scholar
  21. 21.
    Yang G, Jiang C, Tang Y, Wang P. Effects of l-tetrahydropalmatine on neuron apoptosis during acute cerebral ischemia-reperfusion of rats. J Tongji Med Univ 2000;20:106–108.CrossRefPubMedGoogle Scholar
  22. 22.
    Liu YL, Yan LD, Zhou PL, Wu CF, Gong ZH. Levotetrahydropalmatine attenuates oxycodone-induced conditioned place preference in rats. Eur J Pharmacol 2009;602:321–327.CrossRefPubMedGoogle Scholar
  23. 23.
    Wu L, Ling H, Li L, Jiang L, He M. Beneficial effects of the extract from Corydalis yanhusuo in rats with heart failure following myocardial infarction. J Pharm Pharmacol 2007;59:695–701.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang ZM, Jiang B, Zheng XX. Effect of l-tetrahydropalmatine on expression of adhesion molecules induced by lipopolysaccharides in human umbilical vein endothelium cell. China J Chin Mater Med (Chin) 2005;30:861–864.Google Scholar
  25. 25.
    Anderson L, Seilhamer J. A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 1997;18:533–537.CrossRefPubMedGoogle Scholar
  26. 26.
    Tew KD, Monks A, Barone L, Rosser D, Akerman G, Montali JA, et al. Glutathione-associated enzymes in the human cell lines of the National Cancer Institute Drug Screening Program. Mol Pharmacol 1996;50:149–159.PubMedGoogle Scholar
  27. 27.
    Pradet-Balade B, Boulmé F, Beug H, Müllner EW, Garcia-Sanz JA. Translation control: bridging the gap between genomics and proteomics? Trends Biochem Sci 2001;26:225–229.CrossRefPubMedGoogle Scholar
  28. 28.
    Pigott R, Dillon LP, Hemingway IH, Gearing AJ. Soluble forms of E-selectin, ICAM-1 and VCAM-1 are present in the supernatants of cytokine activated cultured endothelial cells. Biochem Biophys Res Commun 1992;187:584–589.CrossRefPubMedGoogle Scholar
  29. 29.
    Shephard RJ. Adhesion molecules, catecholamines and leucocyte redistribution during and following exercise. Sports Med 2003;33:261–284.CrossRefPubMedGoogle Scholar
  30. 30.
    Shingu M, Hashimoto M, Ezaki I, Nobunaga M. Effect of cytokine-induced soluble ICAM-1 from human synovial cells on synovial cell-lymphocyte adhesion. Clin Exp Immunol 1994;98:46–51.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Cybulsky MI, Gimbrone M. Endothelial Cell Dysfunction. In Simionescu N and Simionescu M, eds. New York: Plenum Press; 1992:129–140.Google Scholar
  32. 32.
    Baeuerle PA. IkappaB-NF-kappaB structures: at the interface of inflammation control. Cell 1998;95:729–731.CrossRefPubMedGoogle Scholar
  33. 33.
    Iademarco MF, McQuillan JJ, Rosen GD, Dean DC. Characterization of the promoter for vascular cell adhesion molecule-1 (VCAM-1). J Biol Chem 1992;267:16323–16329.PubMedGoogle Scholar
  34. 34.
    Neish AS, Williams AJ, Palmer HJ, Whitley MZ, Collins T. Functional analysis of the human vascular cell adhesion molecule 1 promoter. J Exp Med 1992;176:1583–1593.CrossRefPubMedGoogle Scholar

Copyright information

© Chinese Association of the Integration of Traditional and Western Medicine and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Bin-rui Yang (杨彬睿)
    • 1
  • Nan Yu (于 楠)
    • 1
  • Yan-hui Deng (邓艳辉)
    • 1
  • Pui Man Hoi (许贝文)
    • 1
  • Bin Yang (杨 斌)
    • 2
  • Guang-yu Liu (刘光宇)
    • 1
  • Wei-hong Cong (丛伟红)
    • 2
  • Simon Ming-Yuen Lee (李铭源)
    • 1
  1. 1.State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacaoChina
  2. 2.Laboratory of Cardiovascular Diseases, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina

Personalised recommendations