Advertisement

Chinese Journal of Integrative Medicine

, Volume 21, Issue 5, pp 332–338 | Cite as

An investigation of the effects of curcumin on anxiety and depression in obese individuals: A randomized controlled trial

  • Habibollah Esmaily
  • Amirhossein Sahebkar
  • Mehrdad Iranshahi
  • Shiva Ganjali
  • Akram Mohammadi
  • Gordon Ferns
  • Majid Ghayour-Mobarhan
Original Article

Abstract

Objective

To investigate the effectiveness of curcumin, a natural polyphenolic compound with antioxidant and anti-inflammatory activities, on the frequency of symptoms of anxiety and depression in obese individuals.

Methods

In this double blind, cross-over trial, 30 obese subjects were randomized to receive either curcumin (1 g/day) or placebo for a period of 30 days. Following a wash-out interval of 2 weeks, each subject was crossed over to the alternative regimen for a further 30 days. Severity of anxiety and depression was assessed at baseline and at weeks 4, 6 and 10 of the trial using the Beck Anxiety Inventory (BAI) and Beck Depression Inventory (BDI) scales, respectively.

Results

Mean BAI score was found to be significantly reduced following curcumin therapy (P=0.03). However, curcumin supplementation did not exert any significant impact on BDI scores (P=0.7).

Conclusion

Curcumin has a potential anti-anxiety effect in individuals with obesity.

Keywords

Curcuma longa curcumin phenolic psychological disorders Beck Anxiety Inventory scale Beck Depression Inventory scale 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cassano GB, Pini S, Saettoni M, Dell’Osso L. Multiple anxiety disorder comorbidity in patients with mood spectrum disorders with psychotic features. Am J Psychiatry 1999;156:474–476.CrossRefPubMedGoogle Scholar
  2. 2.
    Schechter LE, Ring RH, Beyer CE, Hughes ZA, Khawaja X, Malberg JE, et al. Innovative approaches for the development of antidepressant drugs: current and future strategies. J Am Soc Exp Neurother 2005;2:590–611.Google Scholar
  3. 3.
    Skilton MR, Moulin P, Terra J, Bonnet F. Associations between anxiety, depression, and the metabolic syndrome. Biol Psychiatry 2007;62:1251–1257.CrossRefPubMedGoogle Scholar
  4. 4.
    van Reedt Dortland AK, Vreeburg SA, Giltay EJ, Licht CM, Vogelzangs N, van Veen T, et al. The impact of stress systems and lifestyle on dyslipidemia and obesity in anxiety and depression. Psychoneuroendocrinology 2013;38:209–218.CrossRefPubMedGoogle Scholar
  5. 5.
    Su KP. Inflammation in psychopathology of depression: Clinical, biological, and therapeutic implications. BioMedicine (Netherlands) 2012;2:68–74.Google Scholar
  6. 6.
    Morganti-Kossmann MC, Otto VI, Stahel PF, Kossmann T. The role of inflammation in neurologic disease. Curr Opin Crit Care 2000;6:98–109.CrossRefGoogle Scholar
  7. 7.
    Wong ML, Dong C, Maestre-Mesa J, Licinio J. Polymorphisms in inflammation-related genes are associated with susceptibility to major depression and antidepressant response. Mol Psychiatry 2008;13:800–812.CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Kuppusamy P, Ohnishi ST, Numagami Y, Ohnishi T, Zweier JL. Three-dimensional imaging of nitric oxide production in the rat brain subjected to ischemia-hypoxia. J Cereb Blood Flow Metab 1995;15:899–903.CrossRefPubMedGoogle Scholar
  9. 9.
    Strimpakos AS, Sharma RA. Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials. Antioxid Redox Signal 2008;10:511–545.CrossRefPubMedGoogle Scholar
  10. 10.
    Zheng LD, Tong QS, Wu CH. Growth inhibition and apoptosis inducing mechanisms of curcumin on human ovarian cancer cell line A2780. Chin J Integr Med 2006;12:126–131.CrossRefPubMedGoogle Scholar
  11. 11.
    Fan CL, Qian Y, Wo XD, Yan J, Gao LP. Effect of curcumin on the gene expression of low density lipoprotein receptors. Chin J Integr Med 2005;11:201–204.CrossRefPubMedGoogle Scholar
  12. 12.
    Sahebkar A. Why it is necessary to translate curcumin into clinical practice for the prevention and treatment of metabolic syndrome? Biofactors 2013;39:197–208.CrossRefPubMedGoogle Scholar
  13. 13.
    Sahebkar A. Molecular mechanisms for curcumin benefits against ischemic injury. Fertil Steril 2010;94:e75-e76.CrossRefGoogle Scholar
  14. 14.
    Sahebkar A, Mohammadi A, Atabati A, Rahiman S, Tavallaie S, Iranshahi M, et al. Curcuminoids modulate prooxidant- antioxidant balance but not the immune response to heat shock protein 27 and oxidized LDL in obese individuals. Phytother Res 2013;27:1883–1888.CrossRefPubMedGoogle Scholar
  15. 15.
    Panahi Y, Khalili N, Hosseini MS, Abbasinazari M, Sahebkar A. Lipid-modifying effects of adjunctive therapy with curcuminoids-piperine combination in patients with metabolic syndrome: results of a randomized controlled trial. Complement Ther Med 2014;22:851–857.CrossRefPubMedGoogle Scholar
  16. 16.
    Sahebkar A, Chew GT, Watts GF. Recent advances in pharmacotherapy for hypertriglyceridemia. Prog Lipid Res 2014;56:47–66.CrossRefPubMedGoogle Scholar
  17. 17.
    Panahi Y, Saadat A, Beiraghdar F, Sahebkar A. Adjuvant therapy with bioavailability-boosted curcuminoids suppresses systemic inflammation and improves quality of life in patients with solid tumors: a randomized double-blind placebo-controlled trial. Phytother Res 2014;28:1461–1467.CrossRefPubMedGoogle Scholar
  18. 18.
    Panahi Y, Saadat A, Beiraghdar F, Hosseini Nouzari SM, Jalalian HR, Sahebkar A. Antioxidant effects of bioavailability-enhanced curcuminoids in patients with solid tumors: a randomized double-blind placebo-controlled trial. J Funct Foods 2014;6:615–622.CrossRefGoogle Scholar
  19. 19.
    Esatbeyoglu T, Huebbe P, Ernst IMA, Chin D, Wagner AE, Rimbach G. Curcumin-from molecule to biological function. Angew Chem Int Ed Engl 2012;51:5308–5332.CrossRefPubMedGoogle Scholar
  20. 20.
    Panahi Y, Sahebkar A, Parvin S, Saadat A. A randomized controlled trial on the anti-inflammatory effects of curcumin in patients with chronic sulphur mustard-induced cutaneous complications. Ann Clin Biochem 2012;49:580–588.CrossRefPubMedGoogle Scholar
  21. 21.
    Panahi Y, Sahebkar A, Amiri M, Davoudi SM, Beiraghdar F, Hoseininejad SL, et al. Improvement of sulphur mustardinduced chronic pruritus, quality of life and antioxidant status by curcumin: results of a randomised, double-blind, placebo-controlled trial. Br J Nutr 2012;108:1272–1279.CrossRefPubMedGoogle Scholar
  22. 22.
    Xu Y, Ku B, Tie L, Yao H, Jiang W, Ma X, et al. Curcumin reverses the effects of chronic stress on behavior, the HPA axis, BDNF expression and phosphorylation of CREB. Brain Res 2006;1122:56–64.CrossRefPubMedGoogle Scholar
  23. 23.
    Kulkarni SK, Dhir A, Akula KK. Potentials of curcumin as an antidepressant. Sci World J 2009;9:1233–1241.CrossRefGoogle Scholar
  24. 24.
    Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as “curecumin”: from kitchen to clinic. Biochem Pharmacol 2008;75:787–809.CrossRefPubMedGoogle Scholar
  25. 25.
    Sahebkar A. Are curcuminoids effective C-reactive proteinlowering agents in clinical practice? Evidence from a metaanalysis. Phytother Res 2014;28:633–642.CrossRefPubMedGoogle Scholar
  26. 26.
    Gilhotra N, Dhingra D. GABAergic and nitriergic modulation by curcumin for its antianxiety-like activity in mice. Brain Res 2010;1352:167–175.CrossRefPubMedGoogle Scholar
  27. 27.
    Kumar A, Singh A. Possible nitric oxide modulation in protective effect of (Curcuma longa, Zingiberaceae) against sleep deprivation-induced behavioral alterations and oxidative damage in mice. Phytomedicine 2008;15:577–586.CrossRefPubMedGoogle Scholar
  28. 28.
    Chimakurthy J, Talasila M. Effects of curcumin on pentylenetetrazole-induced anxiety like behaviors and associated changes in cognition and monoamine levels. Psychol Neurosci 2010;3: 239–244.CrossRefGoogle Scholar
  29. 29.
    Available at: http://irct.ir/searchresult.php?keyword=%20j?%20&id=14521&?eld=g&number=1&prt=5&total=10&m=1. Last accessed on December 22, 2014.Google Scholar
  30. 30.
    Beck AT, Epstein N, Brown G, Steer RA. An inventory for measuring clinical anxiety: psychometric properties. J Consult Clin Psychol 1988;56:893–897.CrossRefPubMedGoogle Scholar
  31. 31.
    Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. Aninventory for measuring depression. Arch Gen Psychiatry 1961;4:561–571.CrossRefPubMedGoogle Scholar
  32. 32.
    Lovell MA, Markesbery WR. Oxidative damage in mild cognitive impairment and early Alzheimer’s disease. J Neurosci Res 2007;85:3036–3040.CrossRefPubMedGoogle Scholar
  33. 33.
    Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956;11:298–300.CrossRefPubMedGoogle Scholar
  34. 34.
    Hovatta I, Juhila J, Donner J. Oxidative stress in anxiety and comorbid disorders. Neurosci Res 2010;68:261–275.CrossRefPubMedGoogle Scholar
  35. 35.
    Csiszar A, Wang M, Lakatta EG, Ungvari ZI. Inflammation and endothelial dysfunction during aging: role of NF-?B. J Appl Physiol 2008;105:1333–1341.CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Salim S, Chugh G, Asghar M. Inflammation in anxiety. Adv Protein Chem Struct Biol 2012;88:1–25CrossRefPubMedGoogle Scholar
  37. 37.
    Ruhé HG, Mason NS, Schene AH. Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry 2007;12:331–359.CrossRefPubMedGoogle Scholar
  38. 38.
    Kasper MD. The serotonin-1A receptor in anxiety disorders. Biol Psychiatry 2009;66:627–635.CrossRefPubMedGoogle Scholar
  39. 39.
    Goldberg HL, Finnerty RJ. The comparative efficacy of buspirone and diazepam in the treatment of anxiety. Am J Psychiatry 1979;136:1184–1187.CrossRefPubMedGoogle Scholar
  40. 40.
    Azmitia EC, Gannon PJ, Kheck NM, Whitaker-Azmitia PM. Cellular localization of the 5-HT1A receptor in primate brain neurons and glial cells. Neuropsychopharmacology 1996;14:35–46.CrossRefPubMedGoogle Scholar
  41. 41.
    Artigas F, Adell A, Celada P. Pindolol augmentation of antidepressant response. Curr Drug Targets 2006;7:139–147.CrossRefPubMedGoogle Scholar
  42. 42.
    Xu Y, Ku B, Cui L, Li X, Barish PA, Foster TC, et al. Curcumin reverses impaired hippocampal neurogenesis and increases serotonin receptor 1A mRNA and brainderived neurotrophic factor expression in chronically stressed rats. Brain Res 2007;1162:9–18.CrossRefPubMedGoogle Scholar
  43. 43.
    Yu ZF, Kong LD, Chen Y. Antidepressant activity of aqueous extracts of Curcuma longa in mice. J Ethnopharmacol 2002;83:161–165.CrossRefPubMedGoogle Scholar
  44. 44.
    Nabiuni M, Nazari Z, Abdolhamid Angaji S, Safayi Nejad Z. Neuroprotective effects of curcumin. Aust J Basic Appl Sci 2011;5:2224–2240.Google Scholar
  45. 45.
    Mohammadi A, Sahebkar A, Iranshahi M, Amini M, Khojasteh R, Ghayour-Mobarhan M, et al. Effects of supplementation with curcuminoids on dyslipidemia in obese patients: a randomized crossover trial. Phytother Res 2013;27:374–379.CrossRefPubMedGoogle Scholar

Copyright information

© Chinese Association of the Integration of Traditional and Western Medicine and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Habibollah Esmaily
    • 1
  • Amirhossein Sahebkar
    • 2
    • 3
  • Mehrdad Iranshahi
    • 3
  • Shiva Ganjali
    • 4
  • Akram Mohammadi
    • 5
  • Gordon Ferns
    • 6
  • Majid Ghayour-Mobarhan
    • 7
  1. 1.Department of Biostatistics and Epidemiology, Research Health Center, School of HealthMashhad University of Medical SciencesMashhadIran
  2. 2.Neurogenic Inflammation Research CenterMashhad University of Medical SciencesMashhadIran
  3. 3.Biotechnology Research CenterMashhad University of Medical SciencesMashhadIran
  4. 4.Department of Modern Sciences and TechnologiesMashhad University of Medical SciencesMashhadIran
  5. 5.Cardiovascular Research CenterMashhad University of Medical SciencesMashhadIran
  6. 6.Division of Medical EducationUniversity of BrightonLondonUK
  7. 7.Biochemistry of Nutrition Research CenterMashhad University of Medical SciencesMashhadIran

Personalised recommendations