Advertisement

Chinese Journal of Integrative Medicine

, Volume 24, Issue 7, pp 551–560 | Cite as

A Review on Pharmacological and Analytical Aspects of Naringenin

  • Kanika Patel
  • Gireesh Kumar Singh
  • Dinesh Kumar PatelEmail author
Review

Abstract

Flavonoids are a widely distributed group of phytochemicals having benzo-pyrone nucleus, and more than 4,000 different flavonoids have been described and categorized into flavonols, flavones, flavanones, isoflavones, catechins and anthocyanidins. Flavonoids occurs naturally in fruits, vegetables, nuts, and beverages such as coffee, tea, and red wine, as well as in medical herbs. Flavonoids are responsible for the different colors of plant parts and are important constituents of the human diet. Flavanoids have different pharmacological activities, such as antioxidant, anti-allergic, antibacterial, anti-inflammatory, antimutagenic and anticancer activity. Naringenin belongs to the flavanones and is mainly found in fruits (grapefruit and oranges) and vegetables. Pharmacologically, it has anticancer, antimutagenic, anti-inflammatory, antioxidant, antiproliferative and antiatherogenic activities. Naringenin is used for the treatments of osteoporosis, cancer and cardiovascular diseases, and showed lipid-lowering and insulin-like properties. In the present review, detailed pharmacological and analytical aspects of naringenin have been presented, which revealed the impressive pharmacological profile and the possible usefulness in the treatment of different types of diseases in the future. The information provided in this communication will act as an important source for development of effective medicines for the treatment of various disorders.

Keywords

analytical techniques flavonoids naringenin pharmacological activity phytoconstituents 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11655_2014_1960_MOESM1_ESM.pdf (262 kb)
Supplementary material, approximately 262 KB.

References

  1. 1.
    Patel DK, Kumar R, Prasad SK, Hemalatha S. Pharmacologically screened aphrodisiac plant—a review of current scientific literature. Asian Pac J Trop Biomed 2011;1:S131–S138.CrossRefGoogle Scholar
  2. 2.
    Patel DK, Laloo D, Kumar R, Hemalatha S. Pedalium murex Linn—an overview of its phytopharmacological aspects. Asian Pac J Trop Med 2011;4:748–755.PubMedCrossRefGoogle Scholar
  3. 3.
    Patel DK, Prasad SK, Kumar R, Hemalatha S. Cataract: a major secondary complication of diabetes, its epidemiology and an overview on major medicinal plants screened for anticatract activity. Asian Pac J Trop Dis 2011;1:323–329.CrossRefGoogle Scholar
  4. 4.
    Peng L, Wang B, Ren P. Reduction of MTT by flavonoids in the absence of cells. Colloids Surf B Biointerfaces 2005;45:108–111.PubMedCrossRefGoogle Scholar
  5. 5.
    Han L, Dong B, Yang X, Huang C, Wang X, Wu X. Effect of light on flavonoids biosynthesis in red rice Rdh. Agricultural Sci China 2009;8:746–752.CrossRefGoogle Scholar
  6. 6.
    Procházková D, Boušová I, Wilhelmová N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia 2011;82:513–523.PubMedCrossRefGoogle Scholar
  7. 7.
    Kim JS, Kanga OJ, Gweorb OC. Comparison of phenolic acids and flavonoids in black garlic at different thermal processing steps. J Funct Foods (2012), http://dx.doi.org/10.1016/j.jff.2012.08.006.Google Scholar
  8. 8.
    Schijlen EG, Ric de Vos CH, van Tunen AJ, Bovy AG. Modification of flavonoid biosynthesis in crop plants. Phytochemistry 2004;65:2631–2648.PubMedCrossRefGoogle Scholar
  9. 9.
    Galluzzo P, Ascenzi P, Bulzomi P, Marino M. The nutritional flavanone naringenin triggers antiestrogenic effects by regulating estrogen receptor α-palmitoylation. Endocrinology 2008;149:2567–2575.PubMedCrossRefGoogle Scholar
  10. 10.
    Han X, Ren D, Fan P, Shen T, Lou H. Protective effects of naringenin-7-O-glucoside on doxorubicin-induced apoptosis in H9C2 cells. Eur J Pharmacol 2008;581:47–53.PubMedCrossRefGoogle Scholar
  11. 11.
    Martin HJ, Kornmann F, Fuhrmann GF. The inhibitory effects of flavonoids and antiestrogens on the Glut1 glucose transporter in human erythrocytes. Chem Biol Interact 2003;146:225–235.PubMedCrossRefGoogle Scholar
  12. 12.
    Bernini R, Mincione E. Cortese M, Saladino R, Gualandib G, Cristina M. Belfioreb conversion of naringenin and hesperetin by heterogeneous catalytic Baeyer-Villiger reaction into lactones exhibiting apoptotic activity. Tetrahedron Letters 2003;44:4823–4825.CrossRefGoogle Scholar
  13. 13.
    Tapas AR, Sakarkar DM, Kakde RB. Flavonoids as nutraceuticals: a review. Trop J Pharm Res 2008;7:1089–1099.CrossRefGoogle Scholar
  14. 14.
    Horvath CR, Martos PA, Saxena PK. Identification and quantification of eight flavones in root and shoot tissues of the medicinal plant huangqin (Scutellaria baicalensis Georgi) using high-performance liquid chromatography with diode array and mass spectrometric detection. J Chromatogr A 2005;1062:199–207.PubMedCrossRefGoogle Scholar
  15. 15.
    Hughes LA, Arts IC, Ambergen T, Brants HA, Dagnelie PC, Goldbohm RA, et al. Higher dietary flavone, flavonol, and catechin intakes are associated with less of an increase in BMI over time in women: a longitudinal analysis from the Netherlands Cohort Study. Am J Clin Nutr 2008;88:1341–1352.PubMedGoogle Scholar
  16. 16.
    Erdogdu Y, Unsalan O, Gulluoglu. Vibrational analysis of flavone. Turk J Phys 2009;33:249–259.Google Scholar
  17. 17.
    Verbeek R, Plomp AC, van Tol EA, van Noort JM. The flavones luteolin and apigenin inhibit in vitro antigen-specific proliferation and interferongamma production by murine and human autoimmune T cells. Biochem Pharmacol 2004;68:621–629.PubMedCrossRefGoogle Scholar
  18. 18.
    Felgines C, Texier O, Morand C, Manach C, Scalbert A, Régerat F, et al. Bioavailability of the flavanone naringenin and its glycosides in rats. Am J Physiol Gastrointest Liver Physiol 2000;279:G1148–G1154.PubMedCrossRefGoogle Scholar
  19. 19.
    Lee S, Lee CH, Moon SS, Kim E, Kim CT, Kim BH. Naringenin derivatives as anti-atherogenic agents. Bioorg Medicinal Chem Lett 2003;13:3901–3903.CrossRefGoogle Scholar
  20. 20.
    Moon YJ, Wang X, Morris ME. Dietary flavonoids: effects on xenobiotic and carcinogen metabolism. Toxicol In Vitro 2006;20:187–210.PubMedCrossRefGoogle Scholar
  21. 21.
    Schramm DD, Collins HE, German JB. Flavonoid transport by mammalian endothelial cells. J Nutr Biochem 1999;10:193–197.PubMedCrossRefGoogle Scholar
  22. 22.
    Bi S, Ding L, Tian Y, Song D, Zhou X, Liu X, et al. Investigation of the interaction between flavonoids and human serum albumin. J Mol Struct 2004;703:37–45.CrossRefGoogle Scholar
  23. 23.
    Liu PX, Gao J, Chen YJ, Long W, Shen X, Tang WS. Anticancer activity of total flavonoids isolated from Xianhe Yanling Recipe. Chin J Integr Med 2011;17:459–63.PubMedCrossRefGoogle Scholar
  24. 24.
    Lien EJ, Lien LL, Wang R, Wang J. Phytochemical analysis of medicinal plants with kidney protective activities. Chin J Integr Med 2012;18:790–800.PubMedCrossRefGoogle Scholar
  25. 25.
    Wilcox LJ, Borradaile NM, Huff MW. Antiatherogenic properties of naringenin, a citrus flavonoid. Cardiovasc Drug Rev 1999;17:160–178.CrossRefGoogle Scholar
  26. 26.
    Liu X, Wang W, Hu H, Tang N, Zhang C, Liang W, et al. Smad 3 specific inhibitor, naringenin, decreases the expression of extracellular matrix induced by TGF-beta 1 in cultured rat hepatic stellate cells. Pharmaceut Res 2006;23:82–89.CrossRefGoogle Scholar
  27. 27.
    Yoshida H, Takamura N, Shuto T, Ogata K, Tokunaga J, Kawai K. The citrus flavonoids hesperetin and naringenin block the lipolytic actions of TNF-α in mouse adipocytes. Biochem Biophys Res Commun 2010;394:728–732.PubMedCrossRefGoogle Scholar
  28. 28.
    Mulvihill EE, Allister EM, Sutherland BG, Telford DE, Sawyez CG, Edwards JY. Naringenin prevents dyslipidemia, apoB overproduction and hyperinsulinemia in LDL-receptor null mice with diet-induced insulin resistance. Diabetes 2009;58:2198–2210.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Gutzeit HO, Henker Y, Kind B, Franz A. Specific interactions of quercetin and other flavonoids with target proteins are revealed by elicited fluorescence. Biochem Biophys Res Commun 2004;318:490–495.PubMedCrossRefGoogle Scholar
  30. 30.
    Ciolino HP, Wang TTY, Yeh GC. Diosmin and diosmetin are agonists of the aryl hydrocarbon receptor that differentially affect cytochrome P450 1A1 activity. Cancer Res 1998;58:2754–2760.PubMedGoogle Scholar
  31. 31.
    Kálai T, Kulcsár G, Ősz E, Jekő J, Sümegi B, Hidega K. Synthesis of paramagnetic and diamagnetic flavones and flavanones. ARKIVOC 2004;7:266–276.Google Scholar
  32. 32.
    Céliz G, Daz M, Audisio MC. Antibacterial activity of naringin derivatives against pathogenic strains. J Appl Microbiol 2011;111:731–738.PubMedCrossRefGoogle Scholar
  33. 33.
    Vandeputte OM, Kiendrebeogo M, Rasamiravaka T, Stévigny C, Duez P, Rajaonson S, et al. The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Microbiology 2011;57:2120–2132.CrossRefGoogle Scholar
  34. 34.
    Lakshmi V, Joseph SK, Srivastava S, Verma SK, Sahoo MK, Dube V, et al. Antifilarial activity in vitro and in vivo of some flavonoids tested against Brugia malayi. Acta Trop 2010;116:127–133.PubMedCrossRefGoogle Scholar
  35. 35.
    Vikram A, Jesudhasan PR, Jayaprakasha GK, Pillai SD, Jayaraman A, Patil BS. Citrus flavonoid represses salmonella pathogenicity island 1 and motility in S. Typhimurium LT2. Int J Food Microbiol 2011;145:28–36.PubMedCrossRefGoogle Scholar
  36. 36.
    Prabu SM, Shagirtha K, Renugadevi J. Naringenin in combination with vitamins C and E potentially protects oxidative stress-mediated hepatic injury in cadmium-intoxicated rats. J Nutr Sci Vitaminol (Tokyo) 2011;57:177–185.CrossRefGoogle Scholar
  37. 37.
    Freeman BL, Eggett DL, Parker TL. Synergistic and antagonistic interactions of phenolic compounds found in navel oranges. J Food Sci 2010;75:C570–576.PubMedCrossRefGoogle Scholar
  38. 38.
    Jain A, Yadav A, Bozhkov AI, Padalko VI, Flora SJ. Therapeutic efficacy of silymarin and naringenin in reducing arsenic-induced hepatic damage in young rats. Ecotoxicol Environ Saf 2011;74:607–614.PubMedCrossRefGoogle Scholar
  39. 39.
    Wang N, Li D, Lu NH, Yi L, Huang XW, Gao ZH. Peroxynitrite and hemoglobin-mediated nitrative/oxidative modification of human plasma protein: effects of some flavonoids. J Asian Nat Prod Res 2010;12:257–264.PubMedCrossRefGoogle Scholar
  40. 40.
    Cavia-Saiz M, Busto MD, Pilar-Izquierdo MC, Ortega N, Perez-Mateos M, Muñiz P. Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: a comparative study. J Sci Food Agric 2010;90:1238–1244.PubMedCrossRefGoogle Scholar
  41. 41.
    Lin WC, Lin JY. Five bitter compounds display different anti-inflammatory effects through modulating cytokine secretion using mouse primary splenocytes in vitro. J Agric Food Chem 2011;59:184–192.PubMedCrossRefGoogle Scholar
  42. 42.
    Chao CL, Weng CS, Chang NC, Lin JS, Kao ST, Ho FM. Naringenin more effectively inhibits inducible nitric oxide synthase and cyclooxygenase-2 expression in macrophages than in microglia. Nutr Res 2010;30:858–864.PubMedCrossRefGoogle Scholar
  43. 43.
    Claussnitzer M, Skurk T, Hauner H, Daniel H, Rist MJ. Effect of flavonoids on basal and insulin-stimulated 2-deoxyglucose uptake in adipocytes. Mol Nutr Food Res 2011;55:S26–34.PubMedCrossRefGoogle Scholar
  44. 44.
    Oršolić N, Gajski G, Garaj-Vrhovac V, Dikić D, Prskalo ZŠ, Sirovina D. D DNA-protective effects of quercetin or naringenin in alloxan-induced diabetic mice. Eur J Pharmacol 2011;656:110–118PubMedCrossRefGoogle Scholar
  45. 45.
    Zygmunt K, Faubert B, MacNeil J, Tsiani E. Naringenin, a citrus flavonoid, increases muscle cell glucose uptake via AMPK. Biochem Biophys Res Commun 2010;398:178–183.PubMedCrossRefGoogle Scholar
  46. 46.
    Horiba T, Nishimura I, Nakai Y, Abe K, Sato R. Naringenin chalcone improves adipocyte functions by enhancing adiponectin production. Mol Cell Endocrinol 2010;323:208–214.PubMedCrossRefGoogle Scholar
  47. 47.
    Yoshida H, Takamura N, Shuto T, Ogata K, Tokunaga J, Kawai K, Kai H. The citrus flavonoids hesperetin and naringenin block the lipolytic actions of TNF-alpha in mouse adipocytes. Biochem Biophys Res Commun 2010;394:728–732.PubMedCrossRefGoogle Scholar
  48. 48.
    Bak Y, Kim H, Kang JW, Lee DH, Kim MS, Park YS, et al. A synthetic naringenin derivative, 5-Hydroxy-7,4′-diacetyloxyflavanone-N-phenyl hydrazone (N101-43), induces apoptosis through up-regulation of Fas/FasL expression and inhibition of PI3K/Akt signaling pathways in nonsmall-cell lung cancer cells. J Agric Food Chem 2011;59:10286–10297.PubMedCrossRefGoogle Scholar
  49. 49.
    Qin L, Jin L, Lu L, Lu X, Zhang C, Zhang F, et al. Naringenin reduces lung metastasis in a breast cancer resection model. Protein Cell 2011;2:507–516.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Tundis R, Loizzo MR, Menichini F, Bonesi M, Colica C, Menichini F. In vitro cytotoxic activity of extracts and isolated constituents of Salvia leriifolia Benth. against a panel of human cancer cell lines. Chem Biodivers 2011;8:1152–1162.PubMedCrossRefGoogle Scholar
  51. 51.
    Masoodi TA, Alhamdanz AH. Inhibitory effect of flavonoids on mutant H-Rasp protein. Bioinformation 2010;5:11–15.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Sabarinathan D, Mahalakshmi P, Vanisree AJ. Naringenin promote apoptosis in cerebrally implanted C6 glioma cells. Mol Cell Biochem 2010;345:215–222.PubMedCrossRefGoogle Scholar
  53. 53.
    Jin CY, Park C, Hwang HJ, Kim GY, Choi BT, Kim WJ, et al. Naringenin up-regulates the expression of death receptor 5 and enhances TRAIL-induced apoptosis in human lung cancer A549 cells. Mol Nutr Food Res 2011;55:300–309.PubMedCrossRefGoogle Scholar
  54. 54.
    Pérez-Pastén R, Martínez-Galero E, Chamorro-Cevallos G. Quercetin and naringenin reduce abnormal development of mouse embryos produced by hydroxyurea. J Pharm Pharmacol 2010;62:1003–1009.PubMedCrossRefGoogle Scholar
  55. 55.
    Leonardi T, Vanamala J, Taddeo SS, Davidson LA, Murphy ME, Patil BS, et al. Apigenin and naringenin suppress colon carcinogenesis through the aberrant crypt stage in azoxymethane-treated rats. Exp Biol Med 2010;235:710–717.CrossRefGoogle Scholar
  56. 56.
    Naoghare PK, Ki HA, Paek SM, Tak YK, Suh YG, Kim SG, et al. Simultaneous quantitative monitoring of drug-induced caspase cascade pathways in carcinoma cells. Integr Biol 2010;2:46–57.CrossRefGoogle Scholar
  57. 57.
    Fil’chenkov OO, Zavelevych MP. Comparative effects of flavonoids on cell cycle passage and apoptosis induction in human acute lymphoblastic leukemia MT-4 cells. Ukr Biokhim Zh 2009;81:33–39.Google Scholar
  58. 58.
    Smejkal K, Svacinová J, Slapetová T, Schneiderová K, Dall’acqua S, Innocenti G, et al. Cytotoxic activities of several geranyl-substituted flavanones. J Nat Prod 2010; 73:568–572.PubMedCrossRefGoogle Scholar
  59. 59.
    Yi LT, Li CF, Zhan X, Cui CC, Xiao F, Zhou LP, et al. Involvement of monoaminergic system in the antidepressant-like effect of the flavonoid naringenin in mice. Prog Neuropsychopharmacol Biol Psychiatry 2010;34:1223–1228.PubMedCrossRefGoogle Scholar
  60. 60.
    Sánchez-Salgado JC, Castillo-España P, Ibarra-Barajas M, Villalobos-Molina R, Estrada-Soto S. Cochlospermum vitifolium induces vasorelaxant and antihypertensive effects mainly by activation of NO/cGMP signaling pathway. J Ethnopharmacol 2010;130:477–484.PubMedCrossRefGoogle Scholar
  61. 61.
    Lim H, Park H, Kim HP. Effects of flavonoids on matrix metalloproteinase-13 expression of interleukin-1β-treated articular chondrocytes and their cellular mechanisms: inhibition of c-Fos/AP-1 and JAK/STAT signaling pathways. J Pharmacol Sci 2011;116:221–231.PubMedCrossRefGoogle Scholar
  62. 62.
    Chatuphonprasert W, Kondo S, Jarukamjorn K, Kawasaki Y, Sakuma T, Nemoto N. Potent modification of inducible CYP1A1 expression by flavonoids. Biol Pharm Bull 2010;33:1698–1703.PubMedCrossRefGoogle Scholar
  63. 63.
    Vikram A, Jayaprakasha GK, Jesudhasan PR, Pillai SD, Patil BS. Suppression of bacterial cell-cell signalling, biofilm formation and type III secretion system by citrus flavonoids. J Appl Microbiol 2010;109:515–527.PubMedGoogle Scholar
  64. 64.
    Sung PH, Huang FC, Do YY, Huang PL. Functional expression of geraniol 10-hydroxylase reveals its dual function in the biosynthesis of terpenoid and phenylpropanoid. J Agric Food Chem 2011;59:4637–4643.PubMedCrossRefGoogle Scholar
  65. 65.
    Iutyns’ka HO, Tytova LV, Leonova NO, Brovko IS. Activity of main enzymes of ammonium assimilation in Bradyrhizobium japonicum under the influence of plant flavonoid inductors. Mikrobiol Z 2010;72:23–29.PubMedGoogle Scholar
  66. 66.
    Hämäläinen M, Nieminen R, Asmawi MZ, Vuorela P, Vapaatalo H, Moilanen E. Effects of flavonoids on prostaglandin E2 production and on COX-2 and mPGES-1 expressions in activated macrophages. Planta Med 2011;77:1504–1511.PubMedCrossRefGoogle Scholar
  67. 67.
    Tadra-Sfeir MZ, Souza EM, Faoro H, Müller-Santos M, Baura VA, Tuleski TR, et al. Naringenin regulates expression of genes involved in cell wall synthesis in Herbaspirillum seropedicae. Appl Environ Microbiol 2011;77:2180–2183.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Najafian M, Ebrahim-Habibi A, Yaghmaei P, Parivar K, Larijani B. Core structure of flavonoids precursor as an antihyperglycemic and antihyperlipidemic agent: an in vivo study in rats. Acta Biochim Pol 2010;57:553–560.PubMedGoogle Scholar
  69. 69.
    Celik H, Arinç E. Evaluation of the protective effects of quercetin, rutin, naringenin, resveratrol and trolox against idarubicin-induced DNA damage. J Pharm Pharm Sci 2010;13:231–241.PubMedCrossRefGoogle Scholar
  70. 70.
    Chabane MN, Al-Ahmad A, Peluso J, Muller CD, Ubeaud G. Quercetin and naringenin transport across human intestinal Caco-2 cells. J Pharm Pharmacol 2009;61:1473–1483.CrossRefGoogle Scholar
  71. 71.
    Shulman M, Cohen M, Soto-Gutierrez A, Yagi H, Wang HY, Goldwasser J, et al. Enhancement of naringenin bioavailability by complexation with hydroxypropoyl-beta-cyclodextrin. PLoS ONE 2011: e18033.Google Scholar
  72. 72.
    Kanaze FI, Bounartzi MI, Georgarakis M, Niopas I. Pharmacokinetics of the citrus flavanone aglycones hesperetin and naringenin after single oral administration in human subjects. Eur J Clin Nutr 2007;61:472–477.PubMedCrossRefGoogle Scholar
  73. 73.
    Bugianesi R, Salucci M, Leonardi C, Ferracane R, Catasta G, Azzini E, et al. Effect of domestic cooking on human bioavailability of naringenin, chlorogenic acid, lycopene and beta-carotene in cherry tomatoes. Eur J Nutr 2004;43:360–366.PubMedCrossRefGoogle Scholar
  74. 74.
    Bolli A, Marino M, Rimbach G, Fanali G, Fasano M, Ascenzi P. Flavonoid binding to human serum albumin. Biochem Biophys Res Commun 2010;398:444–449.PubMedCrossRefGoogle Scholar
  75. 75.
    Kanaze FI, Kokkalou E, Georgarakis M, Niopas I. A validated solidphase extraction HPLC method for the simultaneous determination of the citrus flavanone aglycones hesperetin and naringenin in urine. J Pharm Biomed Anal 2004;36:175–181.PubMedCrossRefGoogle Scholar
  76. 76.
    Wang M, Chao P, Hou Y, Hsiu S, Wen K, Tsai S. Pharmacokinetics and conjugation metabolism of naringin and naringenin in rats after single dose and multiple dose administrations. J Food Drug Anal 2006;14:247–253.Google Scholar
  77. 77.
    El Mohsen MA, Marks J, Kuhnle G, Rice-Evans C, Moore K, Gibson G, et al. The differential tissue distribution of the citrus flavanone naringenin following gastric instillation. Free Radic Res 2004; 38:1329–1340.PubMedCrossRefGoogle Scholar
  78. 78.
    Jiang HM, Zhang LK, Yuan P, Wang CY, Long YQ. Study on intra-gastric floating beads of naringenin. J Chin Med Mater (Chin) 2011; 34:281–284.Google Scholar
  79. 79.
    Park HS, Oh JH, Lee J, Lee YJ. Minor effects of the citrus flavonoids naringin, naringenin and quercetin, on the pharmacokinetics of doxorubicin in rats. Pharmazie 2011;66:424–429.PubMedGoogle Scholar
  80. 80.
    Diaconu CH, Cuciureanu M, Vlase L, Cuciureanu R. Food-drug interactions: grapefruit juice. Rev Med Chir Soc Med Nat Iasi 2011;115:245–250.PubMedGoogle Scholar
  81. 81.
    Löf D, Schillén K, Nilsson L. Flavonoids: precipitation kinetics and interaction with surfactant micelles. J Food Sci 2011;76:N35–39.PubMedCrossRefGoogle Scholar
  82. 82.
    Yang X, Tian H, Ho CT, Huang Q. Inhibition of citral degradation by oil-in-water nanoemulsions combined with antioxidants. J Agric Food Chem 2011;59:6113–6119.PubMedCrossRefGoogle Scholar
  83. 83.
    Harapu CD, Miron A, Cuciureanu M, Cuciureanu R. Flavonoids-bioactive compounds in fruits juice. Rev Med Chir Soc Med Nat Iasi 2010;114:1209–1214.PubMedGoogle Scholar
  84. 84.
    Sun G, Qian D, Duan J, Li X, Wan J, Guo J. UPLC-Q-TOF-MS analysis of naringin and naringenin and its metabolites in rat plasma after intragastrical administration of alcohol extract of exocarpium Citri grandis. China J Chin Materia Med (Chin) 2010;35:1580–1585.Google Scholar
  85. 85.
    Funari CS, Passalacqua TG, Rinaldo D, Napolitano A, Festa M, Capasso A, et al. Interconverting flavanone glucosides and other phenolic compounds in Lippia salviaefolia Cham. ethanol extracts. Phytochemistry 2011;72:2052–2061.PubMedCrossRefGoogle Scholar
  86. 86.
    Arman M. LC-ESI-MS characterisation of phytoalexins induced in chickpea and pea tissues in response to a biotic elicitor of Hypnea musciformis (red algae). Nat Prod Res 2011;25:1352–1360.PubMedCrossRefGoogle Scholar
  87. 87.
    Wang XQ, Zhou CJ, Zhang N, Wu G, Li MH. Studies on the chemical constituents of Artemisia lavandulaefolia. J Chin Med Mater (Chin) 2011;34:234–236.Google Scholar
  88. 88.
    Wan L, Sun X, Wang X, Li Y, Yu Q, Guo C. A stereospecific HPLC method and its application in determination of pharmacokinetics profile of two enantiomers of naringenin in rats. J Chromatogr Sci 2011;49:316–320.PubMedCrossRefGoogle Scholar
  89. 89.
    Ignatova S, Hewitson P, Mathews B, Sutherland I. Evaluation of dual flow counter-current chromatography and intermittent counter-current extraction. J Chromatogr A 2011;1218:6102–6106.PubMedCrossRefGoogle Scholar
  90. 90.
    Gaggeri R, Rossi D, Collina S, Mannucci B, Baierl M, Juza M. Quick development of an analytical enantioselective high performance liquid chromatography separation and preparative scale-up for the flavonoid naringenin. J Chromatogr A 2011;1218:5414–5422.PubMedCrossRefGoogle Scholar
  91. 91.
    Wang X, Zhen L, Zhang G, Wong MS, Qin L, Yao X. Osteogenic effects of flavonoid aglycones from an osteoprotective fraction of Drynaria fortunei—an in vitro efficacy study. Phytomedicine 2011;18:868–872.PubMedCrossRefGoogle Scholar
  92. 92.
    Nhiem NX, Kiem PV, Minh CV, Lee JJ, Ku JH, Myung CS, et al. A potential inhibitor of rat aortic vascular smooth muscle cell proliferation from the pollen of Typha angustata. Arch Pharm Res 2010;33:1937–1942.PubMedCrossRefGoogle Scholar
  93. 93.
    Kwon C, Jung S. Stereoisomeric separation of some flavanones using highly succinate-substituted α-cyclosophoro-octadecaoses as chiral additives in capillary electrophoresis. Carbohydr Res 2011;346:133–139.PubMedCrossRefGoogle Scholar
  94. 94.
    Guo LB, Sun LL, Deng Q, Chen P. Studies on the flavonoids from Lignum Dalbergiae Odoriferae (II). J Chin Med Mater (Chin) 2010;33:915–917.Google Scholar
  95. 95.
    Ghasemzadeh A, Jaafar HZ, Rahmat A. Identification and concentration of some flavonoid components in Malaysian young ginger (Zingiber officinale Roscoe) varieties by a high performance liquid chromatography method. Molecules 2010;15:6231–6243.PubMedCrossRefGoogle Scholar
  96. 96.
    Tang J, Li N, Dai H, Wang K. Chemical constituents from seeds of Alpinia katsumadai, inhibition on NF-kappaB activation and anti-tumor effect. China J Chin Materia Med (Chin) 2010;35:1710–1714.Google Scholar
  97. 97.
    Yelani T, Hussein AA, Meyer JJ. Isolation and identification of poisonous triterpenoids from Elaeodendron croceum. Nat Prod Res 2010;24:1418–1425.PubMedCrossRefGoogle Scholar
  98. 98.
    Duarte N, Lage H, Abrantes M, Ferreira MJ. Phenolic compounds as selective antineoplasic agents against multidrug-resistant human cancer cells. Planta Med 2010;76:975–980.PubMedCrossRefGoogle Scholar
  99. 99.
    Zheng ZP, Zhu Q, Fan CL, Tan HY, Wang M. Phenolic tyrosinase inhibitors from the stems of Cudrania cochinchinensis. Food Funct 2011;2:259–264.PubMedCrossRefGoogle Scholar
  100. 100.
    Shen YX, Teng HL, Yang GZ, Mei ZN, Chen XL. A new chromone derivative from Berchemia lineata. Acta pharm Sin 2010;45:1139–1143.Google Scholar
  101. 101.
    Alam N, Hossain M, Khalil MI, Moniruzzaman M, Sulaiman SA, Gan SH. High catechin concentrations detected in Withania somnifera (ashwagandha) by high performance liquid chromatography analysis. BMC Complement Altern Med 2011;19:1:65.CrossRefGoogle Scholar
  102. 102.
    Li X, Zhang Y, Zeng X, Yang L, Deng Y. Chemical profiling of bioactive constituents in Sarcandra glabra and its preparations using ultra-highpressure liquid chromatography coupled with LTQ Orbitrap mass spectrometry. Rapid Commun Mass Spectrom 2011;25:2439–2447.PubMedCrossRefGoogle Scholar
  103. 103.
    Bigović D, Savikin K, Janković T, Menković N, Zdunić G, Stanojković T, et al. Antiradical and cytotoxic activity of different Helichrysum plicatum flower extracts. Nat Prod Commun 2011;6:819–822PubMedGoogle Scholar
  104. 104.
    Baranowska I, Magiera S. Development and validation of a UHPLC method for the determination of flavonoids in red wine. J AOAC Int 2011;94:786–794.PubMedGoogle Scholar
  105. 105.
    Piccinelli AL, Lotti C, Campone L, Cuesta-Rubio O, Campo Fernandez M, Rastrelli L. Cuban and Brazilian red propolis: botanical origin and comparative analysis by high-performance liquid chromatographyphotodiode array detection/electrospray ionization tandem mass spectrometry. J Agric Food Chem 2011;59:6484–6491.PubMedCrossRefGoogle Scholar
  106. 106.
    Shi R, Qiao S, Yu D, Shi X, Liu M, Jiang X, et al. Simultaneous determination of five flavonoids from Scutellaria Barbata extract in rat plasma by LC-MS/MS and its application to pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2011;879:1625–1632.PubMedCrossRefGoogle Scholar
  107. 107.
    Yoon KN, Alam N, Lee KR, Shin PG, Cheong JC, Yoo YB, et al. Antioxidant and antityrosinase activities of various extracts from the fruiting bodies of Lentinus lepideus. Molecules 2011;16:2334–2347.PubMedCrossRefGoogle Scholar
  108. 108.
    Ma C, Gao W, Gao Y, Man S, Huang L, Liu C. Identification of chemical constituents in extracts and rat plasma from Fructus Aurantii by UPLCPDA-Q-TOF/MS. Phytochem Anal 2011;22:112–118.PubMedCrossRefGoogle Scholar
  109. 109.
    Sun GL, Qian DW, Duan JA, Li XM, Wan JY. UPLC-Q-TOF/MS analysis of naringin and naringenin and its metabolites in rat urine and feces after intragastric administration of alcohol extract of Exocarpium Citri grandis. Acta Pharm Sinica B 2010;45:761–766.Google Scholar
  110. 110.
    Pothavorn P, Kitdamrongsont K, Swangpol S, Wongniam S, Atawongsa K, Savasti J, et al. Sap phytochemical compositions of some bananas in Thailand. J Agric Food Chem 2010;58:8782–8787.PubMedCrossRefGoogle Scholar
  111. 111.
    Mi X, Zhu R. Simultaneous determination of 7 active ingredients in Scutellaria barbata D. Don by capillary micellar electrokinetic chromatography. Se Pu 2010;28:209–214.PubMedGoogle Scholar
  112. 112.
    Qian X, Zhang Q, Zhang Y, Tu Y. Separation/determination of flavonoids and ascorbic acid in rat serum and excrement by capillary electrophoresis with electrochemical detection. Anal Sci 2010;26:557–560.PubMedCrossRefGoogle Scholar
  113. 113.
    Chatzopoulou A, Karioti A, Gousiadou C, Lax Vivancos V, Kyriazopoulos P, Golegou S, et al. Depsides and other polar constituents from Origanum dictamnus L. and their in vitro antimicrobial activity in clinical strains. J Agric Food Chem 2010;58:6064–6068.PubMedCrossRefGoogle Scholar
  114. 114.
    Rivas-Arreola MJ, Rocha-Guzmán NE, Gallegos-Infante JA, González-Laredo RF, Rosales-Castro M, Bacon JR, et al. Antioxidant activity of oak (Quercus) leaves infusions against free radicals and their cardioprotective potential. Pak J Biol Sci 2010;13:537–545.PubMedCrossRefGoogle Scholar
  115. 115.
    Petrus K, Schwartz H, Sontag G. Analysis of flavonoids in honey by HPLC coupled with coulometric electrode array detection and electrospray ionization mass spectrometry. Anal Bioanal Chem 2011;400:2555–2563.PubMedCrossRefGoogle Scholar
  116. 116.
    Sarju N, Samad AA, Ghani MA, Ahmad F. Detection and quantification of naringenin and kaempferol in Melastoma decemfidum extracts by GCFID and GC-MS. Acta Chromatogr 2012;24:221–228.CrossRefGoogle Scholar
  117. 117.
    Shinkaruk S, Lamothe V, Schmitter JM, Manach C, Morand C, Berard A, et al. Development and validation of two new sensitive ELISAs for hesperetin and naringenin in biological fluids. Food Chem 2010;118:472–481.CrossRefGoogle Scholar
  118. 118.
    Liu Y, Xu F, Zhang Z, Song R, Tian Y. Simultaneous determination of naringenin and hesperetin in rats after oral administration of Da-Cheng-Qi decoction by high-performance liquid chromatography-tandem mass spectrometry. Biomed Chromatogr 2008;22:736–745.PubMedCrossRefGoogle Scholar
  119. 119.
    Ribeiro IA, Ribeiro MHL. Naringin and naringenin determination and control in grapefruit juice by a validated HPLC method. Food Control 2008;19:432–438.CrossRefGoogle Scholar
  120. 120.
    Yáñez JA, Davies NM. Stereospecific high-performance liquid chromatographic analysis of naringenin in urine. J Pharm Biomed Anal 2005;39:164–169.PubMedCrossRefGoogle Scholar
  121. 121.
    Peng HW, Cheng FC, Huang YT, Chen CF, Tsai TH. Determination of naringenin and its glucuronide conjugate in rat plasma and brain tissue by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 1998;714:369–374.PubMedCrossRefGoogle Scholar
  122. 122.
    Ishii K, Furuta T, Kasuya Y. Determination of naringin and naringenin in human urine by high-performance liquid chromatography utilizing solidphase extraction. J Chromatogr B Biomed Sci Appl 1997;704:299–305.PubMedCrossRefGoogle Scholar
  123. 123.
    Huck CW, Stecher G, Ahrer W, Stoggl WM, Buchberger W, Bonn GK. Analysis of three flavonoids by CE-UV and CE-ESI-MS. Determination of naringenin from a phytomedicine. J Sep Sci 2002;25:904–908.CrossRefGoogle Scholar
  124. 124.
    Irakli MN, Samanidou VF, Biliaderis CG, Papadoyannis IN. Simultaneous determination of phenolic acids and flavonoids in rice using solid-phase extraction and RP-HPLC with photodiode array detection. J Sep Sci 2012;35:1603–1611.PubMedCrossRefGoogle Scholar
  125. 125.
    Prokudina EA, Havlicek L, Al-Maharik N, Lapcik O, Strnad M, Gruz J. Rapid UPLC-ESI-MS/MS method for the analysis of isoflavonoids and other phenylpropanoids. J Food Comp Anal 2012;26:36–42.CrossRefGoogle Scholar
  126. 126.
    Deng SD, Wang LJ, Lin L, Deng T, Lin JR, Zheng J. UPLC determination of four flavonoids in exocarpium Citrus grandis before and after acid hydrolysis. China J Tradit Chin Med Pharm (Chin) 2012;27:924–928.Google Scholar
  127. 127.
    Marova I, Parilova K, Friedl Z, Obruca S, Duronova K. Analysis of phenolic compounds in lager beers of different origin: a contribution to potential determination of the authenticity of Czech beer. Chromatographia 2011;73:83–95.CrossRefGoogle Scholar
  128. 128.
    Bertoncelj J, Polak T, Kropf U, Korosec M, Golob T. LC-DAD-ESI/MS analysis of flavonoids and abscisic acid with chemometric approach for the classification of Slovenian honey. Food Chem 2011;127:296–302.CrossRefGoogle Scholar
  129. 129.
    Zhang YL, Lin GF, Cui YQ, Zhan M, Ji JF. High performance liquid chromatography-mass spectrometry analysis of flavonoids in Juglans mandshurica Maxim. stem-barks. China J Tradit Chin Med Pharm (Chin) 2011;26:369–371.Google Scholar
  130. 130.
    Andreu-Navarro A, Fernandez-Romero JM, Gomez-Hens A. Longwavelength fluorescence detection of flavonoids in orange juices by LC. Chromatographia 2010;72:1115–1120.CrossRefGoogle Scholar
  131. 131.
    Boros B, Jakabová S, Dörnyei A, Horváth G, Pluhár Z, Kilár F, et al. Determination of polyphenolic compounds by liquid chromatographymass spectrometry in Thymus species. J Chromatogr A 2010;1217:7972–7980.PubMedCrossRefGoogle Scholar
  132. 132.
    Andreu-Navarro A, Fernández-Romero JM, Gómez-Hens A. Luminescent determination of flavonoids in orange juices by LC with post-column derivatization with aluminum and terbium. J Sep Sci 2010;33:509–15.PubMedCrossRefGoogle Scholar
  133. 133.
    Si-Ahmed K, Tazerouti F, Badjah-Hadj-Ahmed AY, Aturki Z, D’Orazio G, Rocco A, et al. Optical isomer separation of flavanones and flavanone glycosides by nano-liquid chromatography using a phenyl-carbamatepropyl-beta-cyclodextrin chiral stationary phase. (Special Issue: Chiral separations-in honour of Prof. Volker Schurig.) J Chromatogr A 2010;1217:1175–1182.PubMedCrossRefGoogle Scholar
  134. 134.
    Biesaga M, Ochnik U, Pyrzynska K. Fast analysis of prominent flavonoids in tomato using a monolithic column and isocratic HPLC. (Special Issue: Monoliths.) J Sep Sci 2009;32:2835–2840.PubMedCrossRefGoogle Scholar
  135. 135.
    Yang Y, Huang Y, Gu D, Yili A, Sabir G, Aisa HA. Separation and purification of three flavonoids from Helichrysum arenarium (L.) Moench by HSCCC. Chromatographia 2009;69:963–967.CrossRefGoogle Scholar
  136. 136.
    Ren DM, Qu Z, Wang XN, Shi J, Lou HX. Simultaneous determination of nine major active compounds in Dracocephalum rupestre by HPLC. J Pharm Biomed Anal 2008;48:1441–1445.PubMedCrossRefGoogle Scholar
  137. 137.
    Elgin G, Konyalioglu S, Kilinc E. Development and validation of a multidetector HPLC method for the determination of antioxidant flavonoids of some Hypericum L. species. J Liq Chromatogr RT 2009;32:432–448.CrossRefGoogle Scholar
  138. 138.
    Spanakis M, Kasmas S, Niopas I. Simultaneous determination of the flavonoid aglycones diosmetin and hesperetin in human plasma and urine by a validated GC/MS method: in vivo metabolic reduction of diosmetin to hesperetin. Biomed Chromatogr 2009;23:124–131.PubMedCrossRefGoogle Scholar
  139. 139.
    Chirinos R, Betalleluz-Pallardel I, Huaman A, Arbizu C, Pedreschi R, Campos D. HPLC-DAD characterisation of phenolic compounds from Andean oca (Oxalis tuberosa Mol.) tubers and their contribution to the antioxidant capacity. Food Chem 2009;113:1243–1251.CrossRefGoogle Scholar
  140. 140.
    Fonseca FN, Tavares MF, Horváth C. Capillary electrochromatography of selected phenolic compounds of Chamomilla recutita. J Chromatogr A 2007;1154:390–399.PubMedCrossRefGoogle Scholar
  141. 141.
    Füzfai Z, Molnár-Perl I. Gas chromatographic-mass spectrometric fragmentation study of flavonoids as their trimethylsilyl derivatives: analysis of flavonoids, sugars, carboxylic and amino acids in model systems and in citrus fruits. J Chromatogr A 2007;1149:88–101.PubMedCrossRefGoogle Scholar
  142. 142.
    Herrero-Martínez JM, Oumada FZ, Rosés M, Bosch E, Ràfols C. Determination of flavonoid aglycones in several food samples by mixed micellar electrokinetic chromatography. J Sep Sci 2007;30:2493–2500.PubMedCrossRefGoogle Scholar
  143. 143.
    Bachmann S, Huck CW, Bakry R, Bonn GK. Analysis of flavonoids by CE using capacitively coupled contactless conductivity detection. Electrophoresis 2007;28:799–805.PubMedCrossRefGoogle Scholar
  144. 144.
    Lin LZ, Mukhopadhyay S, Robbins RJ, Harnly JM. Identification and quantification of flavonoids of Mexican oregano (Lippia graveolens) by LC-DAD-ESI/MS analysis. J Food Comp Anal 2007;20:361–369.CrossRefGoogle Scholar
  145. 145.
    Zhou DY, Xu Q, Xue XY, Zhang FF, Jing Y, Liang XM. Rapid qualitative and quantitative analyses of flavanone aglycones in Fructus aurantii by HPLC ion-trap MS. J Sep Sci 2007;30:858–867.PubMedCrossRefGoogle Scholar
  146. 146.
    Mata Bilbao Mde L, Andres-Lacueva C, Jauregui O, Lamuela-Raventos RM. Determination of flavonoids in a Citrus fruit extract by LC-DAD and LC-MS. Food Chem 2007;101:1742–1747.CrossRefGoogle Scholar
  147. 147.
    Davis BD, Needs PW, Kroon PA, Brodbelt JS. Identification of isomeric flavonoid glucuronides in urine and plasma by metal complexation and LC-ESI-MS/MS. J Mass Spectrom 2006;41:911–920.PubMedCrossRefGoogle Scholar
  148. 148.
    Schaefer O, Bohlmann R, Schleuning WD, Schulze-Forster K, Hümpel M. Development of a radioimmunoassay for the quantitative determination of 8-prenylnaringenin in biological matrices. J Agric Food Chem 2005;53:2881–2889.PubMedCrossRefGoogle Scholar
  149. 149.
    Zhang J, Brodbelt JS. Screening flavonoid metabolites of naringin and narirutin in urine after human consumption of grapefruit juice by LC-MS and LC-MS/MS. Analyst 2004;129:1227–1233.PubMedCrossRefGoogle Scholar
  150. 150.
    Volpi N. Separation of flavonoids and phenolic acids from propolis by capillary zone electrophoresis. Electrophoresis 2004;25:1872–1878.PubMedCrossRefGoogle Scholar

Copyright information

© Chinese Association of the Integration of Traditional and Western Medicine 2014

Authors and Affiliations

  • Kanika Patel
    • 1
  • Gireesh Kumar Singh
    • 2
  • Dinesh Kumar Patel
    • 2
    Email author
  1. 1.G.L.A Institute of Pharmaceutical ResearchMathuraIndia
  2. 2.Department of Pharmaceutics, Institute of TechnologyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations