Chinese Journal of Integrative Medicine

, Volume 20, Issue 4, pp 311–320 | Cite as

Antimicrobial compounds from mangrove plants: A pharmaceutical prospective

  • Jayanta Kumar PatraEmail author
  • Yugal Kishore Mohanta


Mangroves are salt-tolerant forest ecosystem that extends between tropical and subtropical intertidal regions of the world. Mangroves are biochemically unique vegetation that produce wide array of natural products with immense medicinal potential. These plants are the most valuable resources and provide economic and ecological benefits to the coastal people. Natural products from these plants are of great interest as they provide innumerable direct and indirect benefits to human beings for the discovery of novel antimicrobial and other bioactive compounds. They possess active metabolites with some novel chemical structures that belong to diverse chemical classes such as alkaloids, phenol, steroids, terpenoids and tannins. Several mangrove species have been used in traditional medicine or have few applications as insecticide and pesticide. To date, several mangroves, and their associated species and solvent extracts are screened for antimicrobial activity along with the presence of potent bioactive compounds. The present article emphasizes and creates awareness about the potential mangrove plants and their associates as a source of biologically active compounds with potent antimicrobial properties. This paper also elaborates the mechanisms of action and various methods for screening of antimicrobial compounds.


mangrove plant antimicrobial activity natural product 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bandaranayake WM. Bioactivities, bioactive compounds and chemical constituents of mangrove plants. Wetl Ecol Manag 2002;10:421–452.CrossRefGoogle Scholar
  2. 2.
    Spalding M, Blasco F, Field C, eds. World mangrove atlas. The International Society for Mangrove Ecosystems, Okinawa, Japan; 1997:178–182.Google Scholar
  3. 3.
    Bandaranayake WM. Traditional and medicinal use of mangrove. Mangrove Salt Marshes 1998;2:133–148.CrossRefGoogle Scholar
  4. 4.
    Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecol Biogeogr 2011;20:154–159.CrossRefGoogle Scholar
  5. 5.
    Gray LJ, Shubin K, Cummins H, McCollum D, Bruns T, Comiskey E. Sacrificial leaf hypothesis of mangroves. ISME/GLOMIS Electronic J 2010;8:7–8.Google Scholar
  6. 6.
    Calfo A. Mangroves for the marine aquarium. Reefkeeping 2006;3:1–4.Google Scholar
  7. 7.
    Patra JK, Thatoi HN. Metabolic diversity and bioactivity screening of mangrove plants: a review. Acta Physiol Plant 2011;33:1051–1061.CrossRefGoogle Scholar
  8. 8.
    Robbers J, Speedie M, Tyler V, eds. Pharmacognosy and pharmacobiotechnology. Baltimore: Williams and Wilkins; 1996:1–14.Google Scholar
  9. 9.
    Pyun MS, Shin S. Antifungal effects of the volatile oils from Allium plants against Trichophyton species and synergism of the oils with ketoconazole. Phytomed 2006;13:394–400.CrossRefGoogle Scholar
  10. 10.
    Cos P, Vlietinck AJ, Berghe DV, Maes L. Anti-infective potential of natural products: how to develop a stronger in vitro ‘proof-ofconcept’. J Ethnopharmacol 2006;106:290–302.PubMedCrossRefGoogle Scholar
  11. 11.
    Eldeen IM, Elgorashi EE, van Staden J. Antibacterial, antiinflammatory, anti-cholinesterase and mutagenic effects of extracts obtained from some trees used in South African traditional medicine. J Ethnopharmacol 2005;102:457–464.PubMedCrossRefGoogle Scholar
  12. 12.
    Fazeli MR, Amin G, Attari MMA, Ashtiani H, Jamalifar H, Samadi N. Antimicrobial activities of Iranian sumac and avishan-e shirazi (Zataria multiflora) against some food-borne bacteria. Food Control 2007;18:646–649.CrossRefGoogle Scholar
  13. 13.
    Yin MC, Tsao SM. Inhibitory effect of seven Allium plants upon three Aspergillus species. Int J Food Microbiol 1999;49:49–56.PubMedCrossRefGoogle Scholar
  14. 14.
    Kumar VP, Chauhan NS, Padh H, Rajani M. Search for antibacterial and antifungal agents from selected Indian medicinal plants. J Ethnopharmacol 2006;107:182–188.PubMedCrossRefGoogle Scholar
  15. 15.
    Yff BT, Lindsey KL, Taylor MB, Erasmus DG, Jäger AK. The pharmacological screening of Pentanisia prunelloides and the isolation of the antibacterial compound palmitic acid. J Ethnopharmacol 2002;79:101–107.PubMedCrossRefGoogle Scholar
  16. 16.
    Silva O, Duarte A, Cabrita J, Pimentel M, Diniz A, Gomez E. Antimicrobial activity of Guinea-Bissau traditional remedies. J Ethnopharmacol 1996;50:55–59.PubMedCrossRefGoogle Scholar
  17. 17.
    Chomnawang MT, Surassmo S, Nukoolkarn VS, Gritsanapan W. Antimicrobial effects of Thai medicinal plants against acneinducing bacteria. J Ethnopharmacol 2005;101:330–333.PubMedCrossRefGoogle Scholar
  18. 18.
    Lambert HP, O’Grady FW, eds. Antibiotics and chemotherapy. Edinburgh: Churchill Livingstone; 1992:67–78.Google Scholar
  19. 19.
    Mukhopadhyay A, Peterson RT. Fishing for new antimicrobials. Curr Opinion Chem Biol 2006;10:327–333.CrossRefGoogle Scholar
  20. 20.
    Hugo WB, Russell AD. Types of antimicrobial agents. In: Russell AD, Hugo WB, Ayliffe GAJ, eds. Principles and practice of disinfection, preservation and sterilization. Blackwell Science Ltd; 1982:8–106.Google Scholar
  21. 21.
    Neu HC. The crisis in antibiotic resistance. Science 1992;257:1064–1073.PubMedCrossRefGoogle Scholar
  22. 22.
    Tenover FC. Mechanisms of antimicrobial resistance in bacteria. Am J Med 2006;119:S3–S10.PubMedCrossRefGoogle Scholar
  23. 23.
    Carpenter CF, Chambers HF. Daptomycin: another novel agent for treating infections due to drug-resistant gram-positive pathogens. Clin Infect Dis 2004;38:994–1000.PubMedCrossRefGoogle Scholar
  24. 24.
    Straus SK, Hancock RE. Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. Biochim Biophys Acta 2006;1758:1215–1223.PubMedCrossRefGoogle Scholar
  25. 25.
    Georgopapadakou NH, Tkacz JS. The fungal cell wall as a drug target. Trends Microbiol 1995;3:98–104.PubMedCrossRefGoogle Scholar
  26. 26.
    McManus MC. Mechanisms of bacterial resistance to antimicrobial agents. Am J Health Syst Pharm 1997;54:1420–1433.PubMedGoogle Scholar
  27. 27.
    Drlica K, Zhao X. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev 1997;61:377–392.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Yao JDC, Moellering RC Jr, eds. Antibacterial agents. In: Murray PR, Baron EJ, Jorgensen JH, eds. Manual of clinical microbiology. 8th ed. Washington DC: ASM Press; 2003:1039–1074.Google Scholar
  29. 29.
    Petri M. Epidemiology of antiphospholipid syndrome. In: Khamashta MA, ed. Hughes syndrome. Springer-Verlag London Ltd; 2006:22–28.CrossRefGoogle Scholar
  30. 30.
    Chen X, Rubock MJ, Whitman M. A transcriptional partner for MAD proteins in TGF-beta signaling. Nature 1996;383:691–696.PubMedCrossRefGoogle Scholar
  31. 31.
    Velasco-García R, Zaldívar-Machorro VJ, Mújica-Jiménez C, González-Segura L, Muñoz-Clares RA. Disulfiram irreversibly aggregates betaine aldehyde dehydrogenase-a potential target for antimicrobial agents against Pseudomonas aeruginosa. Biochem Biophys Res Commun 2006;341:408–415.PubMedCrossRefGoogle Scholar
  32. 32.
    Critchfield JW, Butera ST, Folks TM. Inhibition of HIV activation in latently infected cells by flavonoid compounds. AIDS Res Hum Retroviruses 1996;12:39–46.PubMedCrossRefGoogle Scholar
  33. 33.
    Geissman TA. Flavonoid compounds, tannins, lignins and related compounds. In: Florkin M, Stotz EH, eds. Pyrrole pigments, isoprenoid compounds and phenolic plant constituents. New York: Elsevier; 1963:265.Google Scholar
  34. 34.
    Namba T, Morita O, Huang SL, Goshima K, Hattori M, Kakiuchi N. Studies on cardio-active crude drugs; I. Effect of coumarins on cultured myocardial cells. Planta Med 1988;54:277–282.PubMedCrossRefGoogle Scholar
  35. 35.
    Thomson WAR, ed. Medicines from the earth. Maidenhead: McGraw-Hill Book Co., UK; 1978.Google Scholar
  36. 36.
    Fernandez de Caleya R, Gonzalez-Pascual B, García-Olmedo F, Carbonero P. Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro. Appl Microbiol 1972;23:998–1000.PubMedGoogle Scholar
  37. 37.
    Wu J, Xiao Q, Xu J, Li MY, Pan JY, Yang MH. Natural products from true mangrove flora: source, chemistry and bioactivities. Nat Prod Rep 2008;25:955–981.PubMedCrossRefGoogle Scholar
  38. 38.
    Bamroongrugsa N. Bioactive substances from mangrove resources. Songklanakarin J Sci Technol 2008;21:377–386.Google Scholar
  39. 39.
    Konishi T, Takasaki M, Tokuda H, Kiyosawa S, Konoshima T. Anti-tumor-promoting activity of diterpenes from Excoecaria agallocha. Biol Pharm Bull 1998;21:993–996.PubMedCrossRefGoogle Scholar
  40. 40.
    Konishi T, Konoshima T, Fujiwara Y, Kiyosawa S. Exococcarins D, E and K from Excoecaria agallocha. J Nat Prod 2000;63:344–346.PubMedCrossRefGoogle Scholar
  41. 41.
    Patra JK, Panigrahi TK, Rath SK, Dhal NK, Thatoi H. Phytochemical screening and antimicrobial assessment of leaf extracts of Excoecaria agallocha L.: a mangal species of Bhitarkanika, Orissa, India. Adv Nat Appl Sci 2009;3:241–246.Google Scholar
  42. 42.
    Agoramoorthy G, Chandrashekaran M, Venkatasalu V, Hsu MJ. Antibacterial and antifungal activities of fatty acid methyl ester of the blind-your-eye mangrove of India. Braz J Microbiol 2007;38:739–742.CrossRefGoogle Scholar
  43. 43.
    Bickii J, Njifutie N, Foyere JA, Basco LK, Ringwald P. In vitro antimalarial activity of limonoids from Khaya grandifolia C.D.C. (Meliaceae). J Ethnopharmacol 2000;69:27–33.PubMedCrossRefGoogle Scholar
  44. 44.
    Omar S, Zhang J, MacKinnon S, Leaman D, Durst T, Philogene BJR, et al. Traditionally-used antimalarials from the Meliaceae. Curr Top Med Chem 2003;3:133–139.PubMedCrossRefGoogle Scholar
  45. 45.
    Nathan SS, Kalaivani K, Murugan K. Effects of neem limonoids on the malaria vectors Anopheles stephensi Liston (Diptera: Culicidae). Acta Trop 2005;96:47–55.PubMedCrossRefGoogle Scholar
  46. 46.
    Uddin SJ, Nahar L, Shilpi JA, Shoeb M, Borkowski T, Gibbons S, et al. Gedunin, a limonoid from Xylocarpus granatum, inhibits the growth of CaCO2 colon cancer cell line in vitro. Phytother Res 2007;21:757–761.PubMedCrossRefGoogle Scholar
  47. 47.
    Hewag CM, Bandara BMR, Karunaratne V, Wannigama GP, Pinto MRM, Wijesundara DSA. Antibacterial activity of some medicinal plants of Sri Lanka. J Nat Sci Counc Srilanka 1998;26:27–34.Google Scholar
  48. 48.
    Choudhury S, Sree A, Mukherjee SC, Pattnaik P, Bapuji M. In vitro activity of extracts of selected marine algae and mangrove against fish pathogens. Asian Fish Sci 2005;18:285–294.Google Scholar
  49. 49.
    Mishra PM, Sree A. Antibacterial activity and GCMS analysis of the extracts of leaves of Finlaysonia obovata (a mangrove plant). Asian J Plant Sci 2007;6:168–172.CrossRefGoogle Scholar
  50. 50.
    Han L, Huang XS, Dahse HM, Moellmann U, Fu HZ, Grabley S, et al. Unusual naphthoquinone derivatives from the twigs of Avicennia marina. J Nat Prod 2007;70:923–927.PubMedCrossRefGoogle Scholar
  51. 51.
    Saad S, Taher M, Susanti D, Qaralleh H, Awang AFIB. In vitro antimicrobial activity of mangrove plant Sonneratia alba. Asian Pacific J Tropical Biomed 2012;2:427–429.CrossRefGoogle Scholar
  52. 52.
    Milon MA, Muhit MA, Goshwami D, Masud MM, Begum B. Antioxidant, cytotoxic and antimicrobial activity of Sonneratia alba bark. Int J Pharm Sci Res 2012;3:2233–2237.Google Scholar
  53. 53.
    Vadlapudi V, Naidu KC. Bioefficiency of mangrove plants Lumintzera racemosa and Bruguiera gymnorhiza. J Pharm Res 2009;2:1591–1592.Google Scholar
  54. 54.
    Abeysinghe PD. Antibacterial activity of some medicinal mangroves against antibiotic resistant pathogenic bacteria. Indian J Pharm Sci 2010;72:167–172.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Soonthornchareonnon N, Wiwat C, Chuakul W. Biological activities of medicinal plants from mangrove and beach forests. Mahidol Univ J Pharm Sci 2012;39:9–18.Google Scholar
  56. 56.
    Li X, Lei J, Zheng YN, Sattler I, Lin WH. New entisopimarane diterpene from mangrove Excoecaria agallocha L. Chem Res Chin Univ 2007;23:541–543.CrossRefGoogle Scholar
  57. 57.
    Wang ZC, Lin YM, Feng DQ, Ke CH, Lin P, Yan CL, et al. A new atisane-type diterpene from the bark of the mangrove plant Excoecaria agallocha. Molecules 2009;14:414–422.PubMedCrossRefGoogle Scholar
  58. 58.
    Nurdiani R, Firdaus M, Prihanto AA. Phytochemical screening and antibacterial activity of methanol extract of mangrove plant (Rhyzophora mucronata) from Porong River Estuary. J Basic Sci Technol 2012;1:27–29.Google Scholar
  59. 59.
    Alam MA, Sarder M, Awal MA, Sikder MMH, Daulla KA. Antibacterial activity of the crude ethanolic extract of Xylocarpus granatum stems bark. Bangl J Vet Med 2006;4:69–72.Google Scholar
  60. 60.
    Wangensteen H, Alamgir M, Duong GM, Gronhaug TE, Samuelsen AB, Malterud KE. Chemical and biological studies of medicinal plants from the Sundarbans mangrove forest. Adv Phytother Res 2009;1:59–78.Google Scholar

Copyright information

© Chinese Association of the Integration of Traditional and Western Medicine and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jayanta Kumar Patra
    • 1
    • 2
    Email author
  • Yugal Kishore Mohanta
    • 1
    • 3
  1. 1.Department of BiotechnologyNorth Orissa UniversityTakatpur, BaripadaIndia
  2. 2.Department of Biotechnology & Medical EngineeringNational Institute of TechnologyRourkelaIndia
  3. 3.Department of Life ScienceNational Institute of TechnologyRourkelaIndia

Personalised recommendations